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Abstract
Reactive programming reacts to data items as they occur, rather
than waiting for them to complete. This programming paradigm
is widely used in asynchronous and event-driven scenarios, such
as web applications, microservices, real-time data processing, IoT,
interactive UIs, and big data. When done right, it can offer greater
responsiveness without extra resource usage. However, this also re-
quires a thorough understanding of asynchronous and non-blocking
coding, posing a learning curve for developers new to this style of
programming. In this work, we analyze issues reported in reactive
applications and explore their corresponding fixes. Our investiga-
tion results reveal that (1) developers often do not fix or ignore
reactiveness bugs as compared to other bug types, and (2) this ten-
dency is most pronounced for blocking-call bugs – bugs that block
the execution of the program to wait for the operations (typically
I/O operations) to finish, wasting CPU and memory resources. To
improve the debugging practice of such blocking bugs, we develop
a pattern-based proactive program repair technique and obtain 30
patches, which we submit to the developers. In addition, we hy-
pothesize that the low patch acceptance rate for reactiveness bugs
is due to the difficulty of assessing the patches. This is in contrast
to functionality bugs, where the correctness of the patches can
be assessed by running test cases. To assess our hypothesis, we
split our patches into two groups: one with performance improve-
ment evidence and the other without. It turns out that the patches
are more likely to be accepted when submitted with performance
improvement evidence.

CCS Concepts
• Software and its engineering→ Softwaremaintenance tools;
Software evolution; Maintaining software; Error handling
and recovery.
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1 Introduction
Reactive programming has been gaining traction in recent years.
Many software vendors, including Netflix and Uber, have adopted
reactive programming for their applications, which require high
responsiveness and scalability. The data-oriented concept of re-
active programming deviates from the classical control-oriented
programming paradigm and hence poses different challenges not
observed in traditional programs.

In this work, we study the common errors and their fixes ob-
served in reactive programs. In particular, we focus on blocking-call
bugs, a type of error that is very frequently encountered in this
programming paradigm [14]. Typically, reactive programs process
streams of data using chains of functions. If a function in the chain
is blocked, for example, to wait for a network response, the entire
chain is blocked. While reactive libraries such as Reactor [24] and
RxJava [25] make it easy to construct a chain of functions, they
alone do not prevent functions from being blocked. In this paper,
we develop a technique to automatically fix blocking-call bugs.

To the best of our knowledge, this is the first study that inves-
tigates the blocking-call bugs and their fixes in reactive programs
and proposes a repair technique for them. Our study consists of the
following three stages.

• Stage 1: We first examine the bug types observed in 29 open-
source reactive projects built with reactive libraries such as Re-
actor [24] and RxJava [25]. We count the number of reactive-
ness bugs fixed and unfixed by developers against those of non-
reactiveness bugs. It turns out that reactiveness bugs are less
likely to be fixed, and among them, blocking-call bugs are the
most common type.

• Stage 2:We develop an automated program repair (APR) tech-
nique to fix blocking-call bugs. The pattern-based program re-
pair [66] has shown to be effective for fixing specific types of
bugs [77, 84]. We apply this technique to blocking call bugs. We
extract five fix patterns from GitHub and StackOverflow . All the
curated patterns are non-intrusive, meaning they do not change
the functionality of the program. We applied our technique to
30 blocking-call bugs for which we could identify the presence
of the bug. Our technique successfully fixed all 30 bugs without
causing regression.
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• Stage 3: Developers often ignore bug reports even when the bug
is reproducible [12] or decline to accept a patch [6]. A previous
study [64] noted that pull requests associated with performance
enhancements are often given less precedence than those ad-
dressing functionality issues. We hypothesize that developers
would be more likely to accept the patch if it is accompanied by
evidence demonstrating the bug has been fixed. For blocking-
call bugs, performance analysis results before and after fixing
the bug could serve as compelling evidence. Figure 1 shows an
example of performance analysis. To validate this hypothesis,
we conduct a comparative study. We create pull requests (PRs)
with the patches for 30 blocking-call bugs. Half of these PRs are
supplemented with evidence of the bug fix, while the other half
are without it. The result of this study reveals that PRs with the
evidence are more acceptable.
In summary, this paper contributes the following:
• Investigation results of the fix ratio between reactiveness
bugs and other types of bugs.

• Pattern-based repair approach to generating patches for
blocking-call bugs.

• Comparative study results of the fix ratio between patches
submitted together with and without the evidence of fixing.

apache:master ix-blocking-call-in-memory-app

memory-app

(a) Reported blocking-call issue with stack traces of the symptom in the
apache/james project. The corresponding patch has been attached to
this pull request.

Move blocking mail items polling operation to boundedElastic 4143134

(b) Performance measurement
results before applying the
patch.

Move blocking mail items polling operation to boundedElastic 4143134

(c) Performance measurement
results after applying the
patch.

fe81acf apache:master

(d) Developers of the project reviewed the patch and performance anal-
ysis results. This pull request has been merged after the review with
multiple positive comments.

Figure 1: Pull request reporting and fixing a blocking call bug
in the apache/james [20] project. A patch is proactively sub-
mitted and performance improvement evidence have been
submitted together. This pull request has been merged.

2 Background
2.1 Reactive Programs
The Reactive programming paradigm is widely applied in web
development, cloud computing, the Internet of Things (IoT), and

real-time data processing, among other areas. Such applications
employ reactive libraries (such as Reactor [24], RxJava [25], and
Vert.x [13]) to handle a large number of concurrent requests and
process real-time data streams from multiple sources (as in mi-
croservices or IoT apps) asynchronously, keeping the application
responsive and resource-efficient.

When used correctly, reactive programming can help applica-
tions handle increasingly more requests with fewer number of
threads. Based on the publish-subscribe protocol, reactive APIs
react to data items (events) as they occur leveraging the underlying
event loop model [22]. The event loop handles multiple operations
on a single thread, using callbacks from any operation that might
take a long time to complete. However, this approach of program-
ming comes with its own set of challenges, the biggest of which is
the paradigm shift from the imperative programming model.

Reactive programming deals with asynchronous data streams,
event-driven programming, and complex data flow patterns. This
requires, from developers, a thorough understanding of the pub-
sub design pattern and appropriate usage of reactive operators to
ensure the application remains reactive end to end, and the main
execution thread never blocks; being fully reactive is key. To this
end, this paper focuses on the bugs found in reactive programs that
hamper their reactivity, and the corresponding fixes.

1 public ReactorRabbitMQChannelPool(Mono<Connection> connectionMono,

Configuration configuration) {

2 ...

3 newPool = PoolBuilder.from(connectionMono.flatMap(this::openChannel))

4 .sizeBetween(1, configuration.maxChannel)

5 .destroyHandler(

6 channel -> Mono.fromRunnable(

7 Throwing.runnable(() -> {

8 if (channel.isOpen()) channel.close();

9 }))

10 + .then().subscribeOn(Schedulers.boundedElastic())

11 ).buildPool();

12 }

Figure 2: Example of a reactive Java program [16].

Figure 2 shows an example of a reactive program, where a pop-
ular reactive library, Reactor, is used. The usage of the other re-
active libraries is similar. This example is excerpted from a real-
world software project, James1. Lines 3–11 build a pool of channels.
Specifically, the from method call at Line 3 specifies that each
channel should be created by invoking the openChannel method.
Then, sizeBetween at Line 4 specifies the number of channels to
be created. At Line 5, the destroyHandler method call assigns the
callback method to be invoked when the channel is destroyed. Let
us disregard Line 10 for the moment. Finally, buildPool at Line 11
constructs the pool of channels as specified.

2.2 Blocking-call Bugs
While reactive libraries make it easy to write a reactive program in
a declarative style, care must be taken to actually gain the efficiency
of reactive programming. The code in Figure 2, without Line 10,
does not run efficiently. When a pool of channels is destroyed, the
function defined in Line 7–9 is called for each channel. The prob-
lem is that, without Line 10, each channel is handled sequentially,

1Java Apache Mail Enterprise Server. https://github.com/apache/james-project
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even though their outputs are identical to those of the version
with Line 10. Thus, until the handling of the current channel is
completed, the next channel cannot be executed. In other words,
the handling of the current channel blocks the handling of the
next channel. Contrary to imperative programming, in the reactive
pipeline, blocking even a single request impacts the latency of all
other requests since it has limited threads to fall back on. If an
executing thread is not released, the pool will be exhausted very
soon, resulting in the freezing of the entire event loop [61].

Line 10 fixes this blocking-call bug by delegating the handling of
channels to multiple different threads. Thus, multiple channels can
be handled in parallel, and the efficiency of reactive programming
can be achieved. In fact, this patch is obtained by running our tool
presented in Section 4.2 (the FP1 pattern is used2) and our pull
request has been merged into the project.

The blocking-call bugs are less likely to be fixed than other
types of bugs. First, these bugs are hard to detect as the functional
properties of the buggy program are identical to a non-buggy pro-
gram; non-functional properties, such as execution time or memory
footprints, are different in general. Secondly, a blocking bug or its
performance impact is hard to reproduce. Finally because perfor-
mance bugs often require a large refactoring [6], the developers
may switch such bug reports to feature requests [12].

2.3 Proactive Program Repair
Unlike many automated program repair (APR) techniques, which
use test suites to localize a patch location and validate patch candi-
dates, our pattern-based program repair approach does not require
test cases. This is a proactive approach to program repair, that can
be applied to the target program before a bug-revealing test case is
found.

Reproducing the symptoms with test cases may not always be
possible as test cases are not available for some types of bugs,
such as memory bloating and performance issues. Traditional APR
pipelines cannot work for such bugs. This is where proactive ap-
proaches can prove advantageous given that the fix is non-intrusive
(i.e., functionality-preserving). The reason is that if the fix is simple
and non-intrusive, replication of the bug becomes supplementary
rather than a necessity.

Such proactive program repair approaches have been success-
fully applied to fix non-functional bugs [63, 77, 84]. In this work, we
extend the idea to fix blocking-call bugs in reactive programs. As
the patches do not change the functionality of the target program,
this approach serves to fix as many (potential) non-functional bugs
as possible.

3 Study Design
3.1 Overview
Our empirical study has three stages as shown in Figure 3: (1)
inspecting the debugging practice of bugs in open-source projects
using reactive libraries, (2) generating non-intrusive patches for
fixing blocking-call bugs, and (3) submitting the patches as pull
requests and investigating how they are accepted. The purpose

2 then() transforms Mono<Object> to Mono<Void> which is required by

destroyHandler .

of the study is to understand how reactiveness bugs (as a subset
of hard-to-reproduce and often-postponed issues) are addressed in
practice, and how we can improve the debugging practice.

Our study investigates the following research questions:
(1) RQ1: How different is the fix ratio between reactiveness bugs

and non-reactiveness bugs?
(2) RQ2: Does our proactive repair technique generate non-intrusive

patches fixing blocking-call bugs?
(3) RQ3: Are the patches more acceptable if they are submitted

with improvement evidence?
RQ1: It is intuitive that developers would immediately resolve bugs
that are easy to reproduce and impact the program functionality.
However, non-functional bugs do not break functionality and are
often difficult to replicate. Reactiveness is one such non-functional
feature. This research question aims to garner numerical statistics
on the proportion of reactiveness bugs addressed when compared
to other bugs in the same application.
RQ2: After confirming the lack of attention given to reactiveness
bugs, we aim to improve their fix ratio, without relying on bug
detection techniques. We hypothesize that if the repair is non-
intrusive (easy, simple, and not disrupting functionality), it will
be more readily accepted by developers. To this end, we devise
a pattern-based method for fixing blocking-call bugs in reactive
apps using past bug/fix patterns. This research question evaluates
how effective is our proactive technique in resolving such bugs
non-intrusively.
RQ3: While RQ2 stems from the assumption that non-intrusive
patches might enhance the chances of addressing non-functional
bugs, this RQ seeks to explore whether showcasing performance
enhancements would prompt developers to willingly embrace their
fixes.

3.2 Stage 1: Measuring the Fix Ratio
We hypothesize that reactiveness bugs are not given much prece-
dence in comparison to other bug types. Therefore, the objective of
the first stage is to measure and compare the fix ratio between bugs
relevant to reactiveness and other types. Note that since the focus of
this study is the preservation of the application’s reactiveness and
exploring bugs that violate it, we made two generic classifications
for this comparative analysis: reactiveness bugs and other bugs (not
pertaining to reactiveness). Further exploration of other bug types
is not conducted.

As the first step in this stage, we collect open-source projects
utilizing reactive libraries. We then count the reported bugs and
classify them into bugs relevant to reactiveness issues and bugs
related to other issues. We then compute the number of fixed and
unfixed bugs in each class.

To curate projects for our study, we conduct a search on GitHub

using the following criteria:
• Domain. We consider projects using the following popular reac-
tive libraries: Reactor [24], RxJava [25], and Vert.x [13].

• Maintained. We choose projects that are still being maintained
and have been updated within the year leading up to Jan 19, 2022.
Archived projects are not considered.

• Number of contributors. Projects with at least 10 contributors
are selected. Personal projects are not taken into account. Any
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Figure 3: Overview of our study.

project with 10+ contributors not only reflects the scale of the
project but also ensures that the response towards a reported
issue (addressing or ignoring) is not a mere personal preference
of a few [81, 84].

• Number of commits. The selected projects have at least 100
commits on their GitHub repository. This is to ensure that the
result of our study is applicable to projects of non-trivial scale
since a greater number of commits intuitively reflect a larger
code base [84].

• Popularity. Projects with at least 10 stargazers, watchers, or
forks were selected. A number of studies used this threshold for
ensuring a decent outreach and impact of the study subjects [81,
84, 88, 89].

Two authors are involved in this process. The search and filtering
are performed manually, without the use of any API. As a result, 29
projects are curated. For each selected project, we examine issues
to collect bug reports. In the issues, we search for keywords such
as “reactive”, “rxjava”, and “reactor”. We then manually go through
each of the reported issues, reviewing the content of the post itself,
the comments, and any linked PR, to verify that the issue indeed
pertains to reactiveness. We group the bugs into three categories:
fixed , unfixed and won’t fix based on the issue status (Open
or Closed) as well as default and custom labels such as resolved ,
not planned , wontfix , invalid etc. Note that for unfixed issues,
we further ensured their reporting time to be at least a year old to
validate our comparison of the ratio of fixed vs. unfixed bugs.

3.3 Stage 2: Patch Generation
Based on the observations from the first stage (Section 3.2), we
design an automated program repair (APR) technique to help debug
blocking-call bugs. Although reactiveness bugs are less likely to be
fixed by developers, there are still some fixed cases with patches
from which we extract common fix patterns. Note that proactive
approaches with fix patterns [77, 84] are effective in fixing non-
functional bugs.

In order to collect the recurring fix patterns for blocking calls, we
first collect all the blocking call cases in reactive Java projects. Two
of the authors are assigned to this task. We manually search issues
on GitHub (GH) and StackOverflow (SO) with specific keywords.
Although this search and pattern extraction is a manual process, it
has been employed by several studies [65, 66, 69, 72, 73, 77, 79] and
has proven to be effective, as once the patterns have been identified,
they can be used many times to address relevant blocking calls. We
extract common patterns per the following procedure:

(1) For StackOverflow , we search for keywords such as ‘blocking’,
‘blocking call’, and ‘blocking in non-blocking method’, along

with ‘reactive’, ‘reactive Java’, or simply ‘Java’. Then, from the
results, we select the top 1,000 results ranked by ‘best match’,
whose posts, comments, or answers contain the specified key-
words. The actual count of search results was a little greater
than 1000; however, we chose to review the first 1000 as it
suffices to extract common patterns [84].

(2) In the case of GitHub , 1,000 PRs, issues, commits, and discus-
sions are searched, using the same keywords and ranking cri-
teria. Note that ‘1000’ does not imply 1000 PRs and an equal
number of commits, discussions, etc. Instead, the count of search
results for each category (commits, discussions, etc.) averaged
around 300+, 200+, and so forth. We aggregated the search re-
sults across all categories to reach a cumulative count of 1000
reviewed results, aligning with that on StackOverflow .
After assessing the search results, we curate fix patterns that

are accepted as answers in at least two SO posts or two merged
commits in GH, and which we are able to apply and verify locally as
valid, i.e., they indeed remove the blocking call exceptions. As men-
tioned earlier, blocking call bugs are generally paid less attention to,
hence we did not have a large data source to extract patterns from.
Therefore, as an additional measure, we examine the fix patterns by
applying profilers (JFR [3] and VisualVM [37]). Based on profiling
results, only those patterns are considered that show performance
improvement. The results of fix pattern mining are described in
Section 4.2.

Based on the fix patterns, our proactive approach follows the
common steps of existing APR approaches to fixing non-functional
bugs [77, 84]: (1) parsing the source code, (2) identifying locations
to apply patches, and (3) creating patches. Basically, the approach
scans the target program and applies the steps to all source code
files in the program as follows:
• Parsing the Source Code: We make use of JavaParser [17] for
accessing and modifying Java source code via the Abstract Syn-
tax Tree (AST). With more than 5000 stars and 1000+ forks of
their GitHub repository, JavaParser is the most reliable choice
for automating the AST modifications based on our curated
fix patterns. Since our prototype tool is implemented as a CLI
tool, accepting project path as an argument, we make use of
JavaParser ’s SymbolSolverCollectionStrategy to locate the project
root and the containing source root(s). Then, leveraging the
CompilationUnit [9] of each source root, the child nodes are tra-
versed until it detects the node type of interest (e.g., a blocking
method call).

• Applying Patches: If a blocking call pattern is detected, its
corresponding fix pattern is implemented directly in the AST.
The modification might require creating new nodes or removing
some. Once the fix(es) have been applied to all the compilation
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units within a source root, the parsed files are saved implicitly by
JavaParser upon saving the source root. LexicalPreservingPrinter [18]
is chosen as the printer. It ensures that the code that is not modi-
fied by our transformations remains completely unchanged with
the original formatting. For the new AST nodes (not parsed from
source code), since there is no original format to preserve, it
defaults to the pretty-printed form, which follows the standard
Java formatting.

• Repeating and Reporting: Our prototype tool repeats the
above-mentioned process for all source roots with the identi-
fied project root. Upon identification of the blocking call pattern,
it tracks and prints the containing class name so that the user can
identify which class files to review for the modifications made.

3.4 Stage 3: Reporting the Patches
After examining 103 reported blocking-call issues across 29 projects,
we categorize reasons for fixing and not fixing the issues (see Sec-
tion 4.1.1). We observe that many reactive bugs, despite having
working patches, may not be accepted by developers. This moti-
vates us to supplement the patches with evidence of performance
improvement. As a blocking-call bug affects the execution time,
CPU usage, and thread status, we measure and visualize these val-
ues before and after the fix, and submit these results with our PRs,
as illustrated by the James Project PR in Figure 1.

Our intuition here is that the likelihood of PR acceptance is
higher if submitted with performance improvement evidence, along
with the patches. We formulate the following null and alternative
hypotheses to statistically test our intuition:

If the difference in acceptability is statistically significant, we
can reject the null hypothesis, 𝐻0. the evidence is not sufficient
to persuade developers to accept the patches generated by our
proactive approach.

• 𝐻0: Patches submitted with improvement evidence have no ac-
ceptability difference from those without the evidence.

• 𝐻𝑎 : Patches submitted with improvement evidence are more
acceptable than those without the evidence.

When submitting PRs, we attach improvement (e.g., perfor-
mance) analysis results to test the above hypotheses. Specifically,
half of the PRs are submitted with the generated patches and the
analysis results together, while another half of the PRs are submit-
ted only with the patches. Then, we count the number of accepted
and rejected PRs, and we compute the time-to-accept if a PR is
accepted.

Note that all submitted PRs contain genuine patches, which were
also manually validated. As mentioned, performance improvement
evidence was not provided in half of the PRs; this is to mimic the
common practice of submitting patches without such evidence.
Moreover, if the developer does not approve of the patch via their
comments, we update the PR with performance improvement evi-
dence.

4 Results
4.1 Fix Ratio
Following the steps specified in Section 3.2 (Stage 1) led to the acqui-
sition of 29 open-source projects employing reactive libraries. From

Table 1: Outcomes of reactiveness and non-reactiveness bugs
(33,210 in total) collected from 29 open-source projects, fol-
lowing the procedures described in Section 3.2.

Group Outcome

Fixed Unfixed Total

Non-Reactiveness Bugs 29,244 (88.6%) 3775 (11.4 %) 33,019 (100.0%)
Reactiveness Bugs 115 (60.9%) 74 (39.1%) 189 (100.0%)

∗ The difference of the fix ratio between two groups ( Fixed vs. Unfixed + Won’t Fix ) is
statistically significant (p-value < 0.01).
∗ The list of the selected 29 projects and the outcomes of their bugs are available in our replication
package [1].

these projects, we identified 33,210 issues in total (the average is
1,145 issues per project). The list of projects and their corresponding
issues are available in our replication package [1].

Reactiveness bugs are less likely to be fixed than non-reactiveness
bugs as shown in Table 1. Based on the procedure described in
Stage 1 of Section 3.2, we classified 33,210 issues into 33,019 non-
reactiveness and 189 reactiveness bugs. While 11.4% (3,775/33,019)
of non-reactiveness issues remained unfixed, the ratio of unfixed re-
activeness bugs is 39.1% (74/189). The fix ratio of non-reactiveness
and reactiveness bugs are 88.6% (29,244/33,019) and 60.9% (115/189),
respectively. To figure out whether the difference between the fix
ratio of the two groups ( Fixed vs. Unfixed ) is significant, we ap-
plied Barnard’s exact test [58] to the number of bugs in Table 1. It
turned out that the difference is statistically significant (p-value
< 0.01).

Although the total number of bugs between the two groups is
substantially different, the fix ratio of the groups effectively shows
the difference in debugging practices. The results imply that de-
velopers tend to put less effort into bugs if they cannot be easily
reproduced, for example, bugs relevant to reactiveness and perfor-
mance.

To assess the number of reactiveness bugs (189) in terms of their
prevalence, we conducted a small empirical study for another, most
commonly occurring bug in Java: the Null Pointer Exception (NPE).
After applying the search method the same as for reactiveness bugs,
it turns out that even NPE accounts for only 667 issues. Furthermore,
note that GitHub issues are used for multiple purposes: other than
bug reports, Github is also a medium for feature requests, questions,
discussions, and more.

4.1.1 Common reactiveness bugs: Blocking-call.
We identified that blocking-call (see Section 2.2) is one of the most
common types of reactiveness bugs and they are even less likely to
be fixed than other reactiveness bugs. There are 103 blocking-call
bugs out of 189 reactiveness bugs across the 29 projects. 40.8%
(42/103) of the blocking-call bugs remained unfixed while 59.2%
(61/103) of them are fixed3. To find out why blocking-call bugs are
fixed or unfixed, we manually inspected all reports:

We review the content of the post, including any stack traces
attached. The usernames of the reporter and issue closer are veri-
fied to identify self-reported issues. Additionally, we inspect any
linked issues and pull requests, as well as the tags assigned by the
project correspondent (e.g., Invalid , question , waiting-for-triage ,

3The types of reactiveness bugs other than blocking-call bugs are available in our
replication package [1].
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feature-request , etc.). Finally, we go through all comments on the
post, if present.

As a result, we were able to categorize the rationales for fix-
ing/not fixing such bug types. First, the following are the categories
of the most common reasons for developers to fix blocking call bugs:

• Reactive libraries obviously threw a “blocking-call” exception:
36.1% (22/61).

• Self-reported and completed by a developer due to performance/s-
calability issues: 32.8% (20/61).

• Reported issues were successfully reproduced and deemed critical
by developers: 16.3 % (10/61).

• Reasons were unclear: 8.2% (5/61).
• Issues were known and fixed, but the causes were somehow
forgotten: 4.9% (3/61).

• Bug reporters showed how the bug could degrade the perfor-
mances: 1.7% (1/61).

The above categorization results imply that developers tend to
fix reactiveness bugs if the symptoms are obvious and easy to
reproduce.

We were also able to classify common reasons developers ignored
or did not fix reactiveness bugs:
• Developers assumed that the reporters used the program incor-
rectly, and they suggested a workaround instead. However, the
reporters disagreed and the bugs remained unfixed: 23.8% (10/42).

• Developers assumed that the reported blocking-call operations
were inevitable, and they asked to whitelist the operations: 23.8%
(10/42).

• Ignored without any discussion: 16.7% (7/42).
• Developers refused to fix it due to the huge effort required, and
they asked to whitelist the blocking-call operations: 14.2% (6/42).

• Developers assumed that the reported bugs were false positives,
and the bugs were ignored: 7.1% (3/42).

• Marked as a feature request without any discussion: 4.8% (2/42).
• Discussions were made but no concrete solution was drawn: 4.8%
(2/42).

• Issues were unable to be reproduced and no further discussions:
2.4% (1/42).

• Issues were deemed as a very unusual case: 2.4% (1/42).
Our inspection results may imply that developers put some effort
into understanding the symptoms, but the resolutions were often
workarounds or whitelisting because they failed to understand
or refused to put more effort into fixing them. Moreover, even in
some cases when the reporters suggested potential patches, the
developers decided not to fix the bugs; our conjecture here is that
the developers could not verify whether the suggested patch would
actually fix the bug immediately, due to the nature of reproduction
and assessment of blocking-call bugs. The developers might need
to see the evidence of fixing the bugs by the suggested patches.

4.1.2 Key factors contributing to blocking bugs in reactive programs.
Based on our inspection to categorize blocking-call bugs, we iden-
tified the 3 most recurring causes for such bugs in reactive applica-
tions as follows:
Factor 1. Misuse of blocking operators. Figure 4 illustrates the
use of block() [19] operator from the Reactor library in the
eventuate-common project [7]. This operator is seemingly called on

BiFunction<String, List<Object>, List<Map<String, Object>>> selectCallback =
        (sql, params) -> reactiveJdbcStatementExecutor
                .query(sql, params.toArray())
                .collectList()
                .block(Duration.ofMillis(blockingTimeoutForRetrievingMetadata));

return eventuateSqlDialect.castToJson("?",
        eventuateSchema, "message", column, selectCallback);

private static final String COLUMN_TYPE_SQL = "select data_type from 
information_schema.columns where table_schema = ? and table_name = ? and column_name = ?";
private static final String MESSAGE_TABLE_NAME = "message";

Figure 4: Blocking call due to a block() operator [7].

WebSessionServerCsrfTokenRepository CookieServerCsrfTokenRepository

UUID.randomUUID

747d881

112  return UUID.randomUUID().toString(); 

Figure 5: Blocking call due to an improper use of a Java util-
ity [8].

the main thread as there are no schedulers that offload the operation
to a blocking-compatible thread anywhere in the reactive code
chain, hence triggering the blocking call error.
Factor 2. Improper use of utilities and third-party libraries.
With an inadequate understanding of a library or utility and its
use case, there is a high chance of employing its properties or
methods in a way that may produce unexpected results. Figure 5
demonstrates an example scenario that uses Java’s UUID utility
within a reactive pipeline in the Spring-security project [8]. This
utility performs some file read operation from the OS to create
entropy [30] and hence blocks the thread during the process.
Factor 3. I/O bound operations in a non-blocking context. As
mentioned above, in the reactive pipeline, blocking calls such as I/O
operations are only allowed in specific contexts, such as I/O threads
or blocking-compatible Scheduler threads. Consider the scenario
in Figure 6, where a blocking I/O method is used in a non-blocking
context, and though it is converted to toCompletableFuture() [10], it
is then appended with the join() [11] operator. join() , just like
Reactor’s block() , blocks the thread until a result is returned.

Note that counting bugs within these three factors separately is
not feasible as these cases are not exactly mutually exclusive. For
example, at times, the developer performs I/O bound operations in
a non-blocking context (Factor 3), by misusing blocking operators
provided by the reactive library (Factor 1). The purpose of this
section was to briefly highlight what we found as some of the main
and recurring reasons for blocking call bugs in reactive projects.
To avoid these scenarios, developers must become cognizant of
writing asynchronous and non-blocking code, scheduling block-
ing operations on blocking-compatible threads, and the proper use
and chaining of reactive operators. We will discuss these solutions
(i.e., common fix patterns) in detail in Section 4.2. It is also im-
portant to note that Rx libraries’ blocking methods (e.g., RxJava’s
blockingFirst , Reactor’s block etc.) are permissible when the ap-
plication is partially reactive, and the user wants to use the result
of the reactive pipeline in the imperative part of the code.
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f9d339e

28  message.ack().toCompletableFuture().join(); 

2023-02-21 21:31:32,456 WARN  [io.ver.cor.imp.BlockedThreadChecker] (vertx-blocked-
thread-checker) Thread Thread[vert.x-eventloop-thread-2,5,main] has been blocked for 
345343 ms, time limit is 2000 ms: io.vertx.core.VertxException: Thread blocked
        at java.base@11.0.18/jdk.internal.misc.Unsafe.park(Native Method)
        at 
java.base@11.0.18/java.util.concurrent.locks.LockSupport.park(LockSupport.java:194)
        at 
java.base@11.0.18/java.util.concurrent.CompletableFuture$Signaller.block(CompletableFutur
        at 
java.base@11.0.18/java.util.concurrent.ForkJoinPool.managedBlock(ForkJoinPool.java:3128)
        at 
java.base@11.0.18/java.util.concurrent.CompletableFuture.waitingGet(CompletableFuture.jav
        at 
java.base@11.0.18/java.util.concurrent.CompletableFuture.join(CompletableFuture.java:2043
        at 
io.smallrye.context.CompletableFutureWrapper.join(CompletableFutureWrapper.java:166)
        at org.acme.Processor.process(Processor.java:30)
...

  @Incoming("ticks")
  @Outgoing("processed")
  @Acknowledgment(Acknowledgment.Strategy.MANUAL)
  CompletionStage<Message<String>> process(Message<Long> message) throws Exception {
    if (count++ % 8 == 0) {
      message.nack(new Throwable("Random failure to process a record.")).toCompletableFut

Figure 6: Blocking I/O in non-blocking context [23].

RQ1: How different is the fix ratio between reactiveness bugs and
non-reactiveness bugs?
Answer to RQ1: The fix ratio of reactiveness bugs is significantly
lower than that of other types of bugs. This implies that developers
often ignore or postpone certain type of bugs (reactiveness bugs in
this case). Blocking-call bugs are one of the most common unfixed
and ignored bugs.

4.2 Patch Generation
Following the procedure described in Section 3.3, we curated the fix
patterns and applied them to the open-source projects containing
the unfixed blocking-call bugs mentioned in Table 1 and Section 4.1.
We will first provide brief descriptions for each of the recurring fix
patterns we curated that address the common blocking call bugs:

4.2.1 Fix Patterns. We extracted 5 common fix patterns from the
fixed blocking-call bugs according to the procedure described in
Section 3.3. All fix patterns preserve the functionality of the original
program. They only make the program more reactive. Due to space
constraints, we only show the patterns for Reactor. Other reactive
libraries (i.e., RxJava and Vert.x) can be handled similarly.
FP1. Offloading to Separate Worker ThreadsThe following de-
scribes the schema of this fix pattern.

FP1. Offloading to Separate Worker Threads

// 1. 𝜏 (𝐸 ) <: Mono | Flux

// 2. 𝐸 involves a blocking operation

// 3. In the reactive pipeline to which 𝐸 belongs, subscribeOn is not invoked.

- 𝐸

+ 𝐸.subscribeOn(Schedulers.boundedElastic())

// Example

- return Mono.fromCallable(() -> extractContent(inputStream, contentType));

+ return Mono.fromCallable(() -> extractContent(inputStream, contentType))

+ .subscribeOn(Schedulers.boundedElastic());

In the schema, 𝐸 represents an expression of type Mono or Flux –
Reactor’s types to denote a sequence of at most one or 𝑁 > 1 items,
respectively. Suppose 𝐸 involves a blocking operation such as an I/O
operation. FP1 substitutes 𝐸.subscribeOn(Schedulers.boundedElastic())
for 𝐸. Please see the accompanying example. Note that in the ex-
ample, Mono.fromCallable returns a value of type Mono, and hence
FP1 can be applied. After this transformation, the execution of 𝐸
– e.g., extractContent(...) – is offloaded to a separate worker thread,
making the execution of 𝐸 asynchronous.

FP2. Lazy Method Call Consider the example shown in the fol-
lowing box.

FP2. Lazy Method Call

// 𝐸 involves a blocking operation

- Mono.just(𝐸) // eager evaluation of 𝐸

+ Mono.fromCallable(() -> 𝐸) // lazy evaluation of 𝐸

// Example

- Mono.just(getSomething()).subscribe(e -> doSomething(e));

+ Mono.fromCallable(() -> getSomething()).subscribe(e -> doSomething(e));

In Line 6,Mono.just(getSomething()) executes getSomething() imme-
diately before subscribe is called. In comparison, Mono.fromCallable(()
-> getSomething()) executes getSomething() only after subscribe is called.
What happens when getSomething() involves a blocking operation
and takes a long time to complete? In the former, the thread running
Mono.just is blocked until getSomething() completes. However, in the
latter, the execution of getSomething() is delayed until subscribe is
called. By combining FP1 and FP2, we obtain the following code
where getSomething() is executed on a separate worker thread.

Mono.fromCallable(() -> getSomething())

.subscribeOn(Schedulers.boundedElastic()).subscribe(e -> doSomething(e));

FP3. Reactive Filtering The Reactor library provides a method,
filter, taking as input a predicate (e.g., isUserOnline in Line 5).

FP3. Reactive Filtering

- 𝐸1.filter(𝐸2 -> 𝐸3)
+ 𝐸1.filterWhen(𝐸2 -> Mono.fromCallable(() -> 𝐸3))

// Example

- userIDs.filter(id -> isUserOnline(id))

+ userIDs.filterWhen(id -> Mono.fromCallable(() -> isUserOnline(id)))

What if the predicate involves a blocking operation? FP3 replaces
filter with filterWhen which executes the predicate asynchronously,
possibly in a separate thread.
FP4. Non-blocking Chaining The following describes the two
schemas of this fix pattern.

FP4. Non-blocking Chaining

// FP4.1

// 1. 𝜏 (𝐸 ) <: Mono
// 2. 𝜏 (𝑆 ) <: Mono | Flux

- 𝐸.block(); 𝑆

+ 𝐸.then(Mono.fromRunnable(() -> 𝑆))

// FP4.2

// 1. 𝜏 (𝐸 ) <: Flux
// 2. 𝜏 (𝑆 ) <: Mono | Flux

// 3. 𝑏𝑙𝑘 ∈ {blockFirst, blockLast}

- 𝐸.𝑏𝑙𝑘(); 𝑆

+ 𝐸.then(Mono.fromRunnable(() -> 𝑆))

FP4.1 is applied to 𝐸.block(); 𝑆 . The thread running this code
is blocked at block() (i.e., 𝑆 is not executed) until 𝐸 is completed.
FP4.1 removes this blocking behavior by connecting 𝐸 and 𝑆 using
the then method. The obtained code forms a single non-blocking
reactive chain. FP4.2 is similar to FP4.1, but it considers the case
where 𝐸 is a Flux.
FP5. Non-blocking Subscription Unlike in FP4, what if a block

method call is not followed by any other code, as shown in the
following?
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FP5. Non-blocking Subscription

// 1. 𝜏 (𝐸 ) <: Mono | Flux

// 2. 𝑏𝑙𝑘 ∈ {block, blockFirst, blockLast}

void 𝑀(...) {

...

- 𝐸.𝑏𝑙𝑘();

+ 𝐸.subscribe();

}

In the above code, any variant of blk subscribes to the publisher 𝐸,
while ensuring that calling method𝑀 is blocked until 𝐸 is finished
emitting. FP5 removes this blocking behavior by replacing block
with subscribe. Invoking subscribe triggers the execution of 𝐸 but
does not block the thread running𝑀 .

The complete list of fix patterns (including the corresponding
fixes for RxJava and Vert.x) is provided in the Figshare reposi-
tory [15]. The effort for extrapolating the fixes mentioned here
to those for RxJava and Vert.x is minimal given the similarity of
the operators; for example, Mono.fromCallable() used in Reactor for
lazy evaluation becomes Single.fromCallable() in RxJava.

4.2.2 Applying fix patterns. We applied our fix patterns to the un-
fixed blocking-call bugs in the 29 open-source projects curated in
Stage 1. To detect new blocking-call bugs, we used BlockHound [5],
a dynamic analysis tool that detects blocking calls in non-blocking
threads. This is necessary as the blocking calls do not follow a spe-
cific pattern, and code that might appear benign might be triggering
some blocking operation under the hood.

The following list describes the distribution of the fix patterns
applied to the new bugs detected. The corresponding pattern num-
bers are mentioned with their sub-parts (a/b/c) matching the full
version of the pattern list available in our replication package [15] :

• Offloading blocking code to worker threads via Schedulers (FP1a):
46.7% (14/30).

• Offloading blocking code to Java’s executor thread (FP1b): 33.3%
(10/30).

• Offloading blocking code to Vertx’s executeBlocking() method
(FP1c): 6.7% (2/30)

• Lazily executing blocking operation by wrapping with from-
Callable() (FP2a): 3.3% (1/30)

• Non-blocking chaining of operations using then() operator (FP4a):
3.3% (1/30).

• Non-blocking chaining of operations usingCompletablefuture.thenRun()
(FP4b): 3.3% (1/30).

• Non-blocking subscription (FP5): 3.3% (1/30).

4.2.3 Impact of Patch Application.
Performance improvement. One of the main goals of this study
is to show the criticality of blocking-call bugs in reactive applica-
tions. To test the hypotheses (𝐻0 and 𝐻𝑎) described in Section 3.4,
we measured and compared the performance of the application
before and after the fix. The performance was measured in terms of
latency (how long the main thread had been in a blocked, waiting,
or sleeping state), CPU usage, heap usage, as well as usage of the
physical memory.

The main impetus for adopting reactive programming in any
project is scalability and resource efficiency. Developers expect to
see the benefit of adopting the reactive approach as the application

scales up, handling more load with the same resources. In this re-
gard, CPU and memory are deemed to be the most critical resources.
These metrics are also common in empirical studies that compare
the performance of different programming paradigms [59, 67].

It is important to note that the actual impact of having or elim-
inating blocking calls can be observed as the application scales,
with more processing on the limited number of threads available
in reactive applications. Nevertheless, Table 2 provides the perfor-
mance evaluation results of 10 of the 29 target programs before and
after applying fixing blocking bugs. The statistical significance of
the differences is denoted as ∗:p-value<0.05 and ∗∗:p-value<0.01.
Note that here we chose the 10 projects with significant reductions
due to space limitations. The complete version of the performance
analysis results is available in the replication package [15].

To address variations during performance profiling, we per-
formed 10 executions for the measurement of each metric. Figure 7
compares CPU, heap, memory, and latency values before and after
the fix, across 10 iterations for the Apache James Project[16]. We
can notice that the CPU and heap usage, as well as latency, gener-
ally stayed lower after fixing blocking calls, apart from the CPU
usage between iterations 5-7. The case of physical usage memory is
interesting. Despite an apparent rise in the final iteration, the aver-
age across all iterations revealed a slight reduction in the physical
memory usage post-bug fix (0.2% decrease, as shown in Table 2).

Here it is worth mentioning that the four metrics are not nec-
essarily directly proportional; their relationship depends on the
nature of the subject. Hence, some metrics may show slight in-
creases post-bug fix; however, these increases are marginal when
compared to the reductions seen in other metrics. All in all, for the
29 reactive subjects, we saw a 6.44% decrease in heap usage, 3.5%
reduction in CPU usage, 3.5% lower latency, and 0.4% less physical
memory usage after fixing blocking calls. Again, the metric values
for each iteration, along with the standard deviations, are provided
in the complete version of the performance analysis results.
Table 2: Performance improvement after blocking call fixes.

Subject CPU (%) ↓ Heap (Mib) ↓ Latency (s) ↓ Memory (%) ↓
Vert.x Kafka Client [31] 12.3 (22%) 139.8 (33.3%)∗ 0 (0%) (3.2%)∗∗

Mercury [46] 0 (0%) 62.1 (14.9%) 0 (0%) 0.4 (0.4%) ∗∗
Spring Reactive Sample [53] 0 (0%) 24 (15.4%) 0 (0%) 1.2 (1.2%)∗∗

Vert.x Micrometer Metrics [54] 1.6 (3.6%) 31.5 (10.1%)∗∗ 0 (0%) 0.2 (0.2%)
Apache James Project [16] 0 (0%) 20.5 (6%) 0.1 (0.3%) 0 (0%)
Spring Framework [29] 0.8 (0.8%) 10.6 (3.4%) 0 (0%) 0 (0%)
AWS SDK for Java [4] 3.7 (14.01%) 0 (0%) 1 (28%) 0.3 (0.3%)∗∗
Vert.x Redis Client [33] 0 (0%) 139.8 (62%)∗ 0 (0%) 0 (0%)

Spring Data Examples [28] 11 (16.1%) 0 (0%) ∗ 0 (0%) 0 (0%)
Nettosphere [21] 0 (0%) 0 (0%) 0.2 (1.4%) 0.1 (0.12%)

Mib: Mebibytes, ∗: p-value < 0.05, ∗∗: p-value < 0.01.

Non-intrusive fixes. All 30 patches preserve the original behavior
of the reactive applications (i.e., functionality-preserving). It is im-
portant to note that all our patch patterns are non-intrusive; that
is, they preserve the original functionality; no regression error was
detected upon running the subjects’ regression test suite. Moreover,
the fix patterns were chosen considering the preservation of the
developer’s original intention. For instance, if a synchronous op-
eration is performed in a reactive context (such as executing an
I/O task or waiting for the result from the previous operation), the
applied patch fixes the blocking call in a way that achieves the de-
sired behaviour (waiting for the result, etc.) while ensuring that the
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Figure 7: Performance measurement over 10 loops after fixing blocking calls in Apache James Project [16].

blocking was done in the compatible schedulers [26] provided by
the reactive libraries. This was further validated by the responses
of the developers to the submitted patches.
Patch Assessment. Our repair approach preserves the original
functionality of the program since we use only non-intrusive fix pat-
terns. Indeed, all 30 patches obtained pass the regression test suites
of the subjects. Our manual investigation cross-checked by two
authors also confirms their non-intrusiveness. As these patches
were generated using only a few fix patterns described in Sec-
tion 4.2, their assessment was straightforward. We also consulted
the performance metrics we measured before and after applying
the patches. In all 30 patches, we observed improvement in the
performance metrics, which further confirms the usefulness of the
patches. Nevertheless, whether a patch is correct and useful in prac-
tice, is ultimately determined by the developers who maintain the
project. Instead of claiming that our patches are correct, we submit-
ted them to the developers of the projects. In the next subsection,
we show how those developers respond to our patches.

RQ2: Does our proactive repair technique generate non-intrusive
patches fixing blocking-call bugs?
Answer to RQ2: Our proactive repair approach generates 30
patches that resolve blocking-call bugs (verified by performance
improvement) while being non-intrusive (i.e. preserving the origi-
nal functionality).

4.3 Acceptance Ratio of the Patches
Following the procedures explained in Section 3.4, we submitted
PRs reporting new blocking-call bugs and corresponding patches
generated by our proactive repair approach (Section 4.2).We created
30 patches to the unfixed issues in the 29 projects curated earlier.

Among 30 PRs, we submitted 15 PRs with performance analysis
results and another 15 PRs were submitted without the results. We
randomly selected the PRs to be submitted with the results. We
then observed the outcomes of the PRs.

PRs with performance analysis results are more likely to be ac-
cepted by developers, as shown in Table 3. Eight out of 15 PRs
(53%) with performance analysis results are accepted by developers,
while 3 out of 15 (20%) PRs are accepted without the results. In addi-
tion, two of the PRs with results are explicitly rejected, while 4 PRs
without results are rejected. To figure out whether the difference be-
tween the fix ratio of two groups ( Accepted vs. Rejected + Ignored )
is significant, we applied Barnard’s exact test [58] to the number of
PRs shown in Table 3. It turned out that the difference is statistically
significant. (p-value < 0.01) and we can reject the null hypothesis,
𝐻0, defined in Section 3.4.

Another observation made from this live study is that developers
tend to accept PRs containing performance analysis results without

Table 3: Outcomes of the pull requests (PRs) submitted for
RQ3, following the procedures described in Section 3.4. The
group w/ perf. results stands for PRs submitted with perfor-
mance analysis results. The group w/o perf. results are PRs
without the results.

Group Outcome Total
Accepted Rejected Ignored

w/ perf. results 8 (53.3%) 2 (13.3%) 5 (33.3%) 15 (100.0%)
w/o perf. results 3 (20.0%) 4 (26.7%) 8 (53.3%) 15 (100.0%)

∗ The difference of the fix ratio ( Accepted vs. Rejected + Ignored ) between two
groups is statistically significant (p-value < 0.01).
∗ The list of 25 subjects considered for our live study is available in our replication
package [1].
∗ PR links will be disclosed later due to the double-blind policy, however, their contents
(with the identity removed) can be found in our replication package.

much discussion. However, if the PRs do not include the results,
they will put more effort into reproducing and understanding the
symptoms reported in the PRs. Figure 8 shows a comment by a
developer who reviewed one of our PRs without the results. The
developer had to inspect the source code where a potential blocking
call was invoked. This inspection confirmed that the blocking call
can block a reactive thread. Thus, the developer improved our PR
to fix the bug.

Move blocking processRequest operation to executor thread 8907f89

Figure 8: Comment by a developer who reviewed our PR
without performance analysis results.

This may imply that our proactive approach is effective in fixing
blocking bugs with non-intrusive patches. In addition, submitting
the patches with improvement evidence makes the PRs more likely
to be accepted by the developers.

RQ3: Are the patches more acceptable if they are submitted with
improvement evidence?
Answer toRQ3: Non-intrusive patches generated by our proactive
approach are more likely to be accepted by developers if they are
submitted with performance improvement evidence.

4.4 Reviewing the Declined Patches
As specified in Table 3, six out of 30 pull requests (PRs) made
were rejected. One PR to vertx-web [36] was turned down based
on the missing evidence of the impact on concurrency. Another
one to vertx-tracing [35] with performance improvement evidence
was rejected on the grounds of a missing correlation between the

776



ISSTA ’24, September 16–20, 2024, Vienna, Austria Arooba Shahoor, Jooyong Yi, and Dongsun Kim

blocking call and the area with performance degradation. Two PRs,
both without performance analysis results, one to vertx-micrometer-
metrics [32] and another to vertx-redis-client [34], were rejected
by the same developer without any concrete explanation; we were
instead suggested to whitelist (allow) the blocking calls. One patch
submitted to spring-data-elasticsearch [27] without performance-
enhancement evidence was rejected due to bug irreproducibility
(despite providing replication steps). A final patch that was rejected
was submitted to aws-sdk-java-v2 [27] with performance improve-
ment evidence. The developer mentioned that they would like to
avoid this kind of patch without providing further explanation. We
were asked to report the issue as a feature request instead.

Due to the double-blind policy, we have not provided the ref-
erence links to the actual pull requests, however the contents of
the PRs, with the removed identity, are available in our replication
package [15].

5 Discussions
5.1 Applicability to Other Programming

Languages
While Java stands out in its widespread adoption of reactive li-
braries [13, 25, 49–51], many other languages such as Python,
Rust, and Kotlin also offer support for asynchronous programming
through mechanisms such as async/await, coroutines, and asyn-
chronous tools, and libraries. Similar to reactive Java programs,
‘blocking’ scenarios can also occur in the programs written in these
languages – the blocking call problem is language-agnostic.

Consider the following Kotlin code snippet extracted from Plees
Tracker [48] project. The shown suspend function performs a block-
ing I/O operation caused by the invocation of the openInputStream

method; a suspend function can be paused without blocking the
thread on which it is executing and can be resumed later [40].

suspend fun importData(context: Context, cr: ContentResolver, uri: Uri) {

val inputStream = cr.openInputStream(uri) // blocking I/O operation

...

}

The following shows how this blocking bug was fixed by the
developer [44]:

suspend fun importData(context: Context, cr: ContentResolver, uri: Uri) {

+ withContext(Dispatchers.IO) {

val inputStream = cr.openInputStream(uri) // blocking I/O operation

...

+ }

}

This fix uses a withContext block to offload the problematic
blocking I/O operation to a separate pool of threads associated
with Dispatchers.IO . This fix pattern is often observed elsewhere
as well [38, 39, 41–43, 45, 47, 52, 55]. Note that the concept used
in this fix pattern is similar to FP1 (Offloading to Separate Worker
Thread) described in Section 4.2.1. This is not coincidental. Reactive
programming concepts are common across many programming
languages. Thus, programs using these concepts are likely to share
similar issues and solutions. As concrete evidence for that, our
replication package includes a list of similar blocking call bugs and
their fixes in programs written in Kotlin, Python and Rust.

5.2 Implications for Researchers and
Practitioners

5.2.1 Implications for researchers. The results of RQ2 highlight the
effectiveness of proactive bug fixes in resolving performance issues
without extensive refactoring. Further research into the scalabil-
ity of proactive bug repair across diverse systems and languages
is encouraged. The results of RQ3 emphasize the importance of
bug-fix evidence for performance-related PRs, encouraging explo-
ration of additional factors influencing PR outcomes. Finally, the
introduction of Virtual Threads (see Section 6.5), which are capa-
ble of suspending and resuming at ‘blocking call’ encounters [76],
prompts an investigation into how their integration affects reactive
programming performance, particularly in case of unintentional
blocking calls in a reactive pipeline.

5.2.2 Implications for practitioners. The results of RQ1 highlight
blocking-call bugs as a prevalent issue in Java reactive program-
ming, indicating a need for improved documentation on threading
and blocking operations in reactive frameworks. Developer training
programs should address the learning curve of transitioning to the
asynchronous and non-blocking nature of the reactive paradigm.
Lastly, the findings for RQ3 suggest that performance bug PRs are
more likely to be accepted when accompanied by evidence of perfor-
mance enhancement. We, therefore, recommend code contributors
keep pull requests concise while including proof of performance
improvement, especially for irreproducible, non-functional bugs.

5.3 Threats to Validity
Threats to external validitymay lie in the target subjects (projects,
bugs, pull requests, etc.) that our study investigates as they are open-
source projects; thus, the results may not apply to other types of
subjects, such as those using closed-source techniques. In addition,
our study focuses only on Java subjects, while other languages that
implement reactive programming were not considered. There are
other libraries (e.g., Akka and Mutiny) for writing reactive pro-
grams even for Java; however, this threat might be mitigated as our
target libraries (i.e., RxJava, Reactor, and Vert.x) are some of the
most popular and representative in the Java community.
Threats to internal validity may include the manual extraction
of the fix patterns by the authors. To address this threat, each
fix pattern is supported by real patches that fix a blocking call in
reactive programs implemented using RxJava, Reactor, and Vert.x.
Threats to construct validity may relate to the performance
analysis results used in the third stage of our empirical study. To
show the effectiveness of the patches generated by our proactive
repair approach, our experiment measures and compares the per-
formance metrics (CPU, memory etc.) before/after applying the
patches. Although the improvement in these metrics may not prove
the correctness of the patches, it might be enough to signify the
impact of blocking calls in reactive applications.

6 Related Work
Reactive Programming (RP): Reactive apps offer flexibility and
scalability, but only with the correct usage of reactive tools and
libraries. Dobslaw et al. [60] studied the frequency, causes, and
fixes of blocking-call violations in Java projects. The goal of the
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findings is to raise awareness of improper blocking calls in reactive
pipelines and promote the correct usage of reactive patterns. Alabor
and Stolze [56] studied software engineers debugging RxJS-based
apps, identifying prevalent challenges and solutions.

There have also been comparative studies on RP tools. Zimmerle
et al. [90] mined GitHub and StackOverflow to study the reactive op-
erators used in the 3 mainstream reactive libraries RxJava, RxJS, and
RxSwift. The goal is to find the most common problems RP users are
facing. Ponge et al. [83] compared the performance of RxJava, Reac-
tor and Mutiny, the 3 mainstream reactive programming libraries in
Java. Likewise, Komolov et al. [68], compared two multi-threading
paradigms (reactive programming and continuation-passing style)
in terms of their maintainability, performance, and testability.

In the context of automation support, Banken et al. [57] created
RxFiddle, an online interactive debugger and visualizer to assist in
the debugging and understanding of data flows in reactive programs.
Köhler and Salvaneschi [68] present 2RX, an automated refactoring
eclipse plugin that converts asynchronous logic (SwingWorker and
Future) into reactive code.

Pattern-Based Program Repair: Pattern-based program repair
has been widely studied since its first introduction [66]. Patches
generated from such a technique have shown to be more acceptable
by developers than those from heuristic-based approaches such as
GenProg [87]. Recently, there have been automatic approaches to
fix pattern mining [69, 70] to mitigate the manual effort.

Several studies have improved the idea of pattern-based program
repair; there are studies extracting patterns for different targets such
as JavaScript faults [79] and performance bugs [77]. Other studies
explore diverse sources of fix patterns, such as Q&A posts [73],
similar snippets [65], fault localization results [69], and static anal-
ysis warnings [71]. In addition, TBar [72] incorporated common fix
patterns from other existing studies and showed that fix patterns
are effective when fixing bugs.

Fix patterns are also useful to generate non-intrusive patches.
Nistor et al. [77] examined patches for performance bugs written
in the C and Java languages. The patches were short and simple
and did not impact the functionality of the program.

Concurrency Bugs: Concurrency bugs in Java have been the
focus of research for a long time; recently researchers are striving to
develop effective tools to minimise their occurrence. Rehype [80] is
a dynamic analyzer that performs automatic performance analysis
on runtime execution traces in Java to detect inefficient concurrency
patterns and suggest source code improvements, with an estimated
effect on performance. ThreadRadar [75] creates glyph-based visu-
alizations representing actively running thread information such
as runtime consumption, types, etc. It integrates these visualiza-
tions within the source code, to better understand symptoms of
concurrency bugs occurring at runtime. ARS (Adaptive Random-
ized Scheduling) [86], inspired by adaptive random testing, is an
algorithm proposed by Zan Wang et al. to detect non-deadlock
concurrency bugs.

Asynchronous Code Optimization: DrAsync [85] identifies
and visualizes 8 common promise-based JavaScript anti-patterns
through static and dynamic analysis, finding 2,600 instances in
20 repositories. It enhances performance by refactoring these is-
sues and provides visual tools like timelines to link promises to
source code. While DrAsync focuses on promise anti-patterns, our

study addresses bugs in reactive applications and how performance
evidence impacts patch acceptance.

Desynchronizer [62] uses static analysis to recommend convert-
ing synchronous API calls to asynchronous ones, identifying 256
suitable refactorings from 316 calls in 12 applications. While 244
conversions were successful with minimal behavioral changes, the
tool’s recommendations need programmer validation. Unlike our
focus on performance issues from blocking-call bugs in reactive
applications, Desynchronizer offers a broad solution for improving
asynchronous performance by migrating synchronous APIs.

Virtual Threads: The Java community is currently working
on techniques for addressing the blocking bugs by redesigning the
language structure itself. Specifically, JDK 19 introduced a preview
version of Virtual threads (VT), also known as Project Loom, which
are managed by the JVM itself and are not bound to the OS. VT
can suspend their execution, store their progress in memory, and
resume later, wherever the OS encounters a ‘blocking call’ [76]. In
between suspension and resumption, a virtual thread is no longer
using the CPU, enabling many virtual threads to run on the same
OS thread, without impacting the JVM’s performance/memory con-
sumption [2].

Virtual threads sparked speculations about reduced blocking
call costs [59]. However, they only partially address reactive pro-
gramming challenges. VT lack support for backpressure, change
propagation, and composability, some of the key features of reactive
programming [74, 78]. In addition, code blocks using synchronized

keywords will still pin/block the carrier (OS) threads, limiting
concurrent virtual thread execution. As it turns out, the use of
synchronized blocks is pervasive across the Java codebase [82].

7 Conclusions
This study has been motivated by the observation that developers
tend to put more or less effort into different types of bugs. The
results of our study show that (1) reactiveness bugs are less likely
to be fixed than other types of bugs; (2) blocking-call bugs are one
of the most common reactiveness bugs; (3) there are common fix
patterns for blocking-call bugs; (4) our proactive repair approach
successfully generates patches for the blocking-call bugs; and (5) the
patches are more likely to be accepted by developers if submitted
with evidence of fixing. We hope the results of this study shed light
on the debugging practice of non-functional bugs and increase the
ratio of their resolution at large.

8 Data Availability
We make the replication package publicly available, which includes
all the code and datasets to reproduce our experiments at https:
//figshare.com/s/0b7e78405b0b86f6cbfb [1].
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