
Dynamic Reverse Code Generation

for Backward Execution

Jooyong Lee

BRICS,
Department of Computer Science,

University of Aarhus,
IT-parken, Aabogade 34,

DK-8200 Aarhus N, Denmark

Abstract

The need for backward execution in debuggers has been raised a number of times. Backward execution
helps a user naturally think backwards and, in turn, easily locate the cause of a bug. Backward execution
has been implemented mostly by state-saving or checkpointing, which are inherently not scalable. In this
paper, we present a method to generate reverse code, so that backtracking can be performed by executing
reverse code. The novelty of our work is that we generate reverse code on-the-fly, while running a debugger,
which makes it possible to apply the method even to debugging multi-threaded programs.

Keywords: debugging, reverse execution, reverse code generation

1 Introduction

It has been pointed out in a number of papers that enabling backward execution

in debuggers would be of great help in a debugging process [1,3,6,7]. A typical

debugger-aided bug-finding, where a debugger does not support backward execu-

tion, is performed in iterative steps of: (1) guess a problematic point which may

cause an unexpected behaviour of a program, and set a breakpoint there (2) restart

a debugging session and watch a program state on the breakpoint. This procedure is

time-consuming, not only because a user must repeat starting and stopping debug-

ging sessions until finally identifying the cause of the error, but also because guesses

made by a user are often not precise. What is worse, as a mainstream language like

Java begins to support multi-threading, the traditional debugging procedure often

even does not work because one cannot keep the scheduling order between threads

the same as before, by only restarting a program. On the other hand, if a debugger

1 Email: jlee@brics.dk

Electronic Notes in Theoretical Computer Science 174 (2007) 37–54

1571-0661 © 2007 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.12.028
Open access under CC BY-NC-ND license.

mailto:jlee@brics.dk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

can run a program backwards, a user can naturally see what happened in the past

and, as a result, trace the error back to its source, not depending on an error-prone

and time-consuming guess-restart procedure.

There have been several works that aim to support backward execution 2 . How-

ever most of them rely on state-saving or checkpointing, a periodic state-saving,

and that makes their debuggers suffer from memory blow-up. Recently Akgul and

Mooney suggested a way to generate reverse code by static analysis (control/data

dependency analysis), and showed the memory efficiency of it [4]. We aim to gen-

erate reverse code in the same spirit as [4], but we also want to be able to deal with

multi-threaded programs, unlike/in addition to [4]. To achieve the goal, we calcu-

late reverse code on-the-fly, while a debugger is running, based on logged history of

transitions, basically pointers to program locations, each of which may require only

a few bits of information 3 .

After introducing our input language and motivating example in the next two

sections, we demonstrate in detail our reverse code generation method (Section 4).

In the subsequent two sections (Section 5,6), we also explain auxiliary techniques

necessary for reverse code generation. Then related work, discussion and conclusion

come in order.

2 Input Language

We assume, as input, an imperative language that supports multi-threading, al-

though as will be discussed in Section 8, we think functional languages can also

benefit from dynamic reverse code generation.

The language grammar is described in the Extended Backus-Naur Form (EBNF),

where regular expression operators such as ?, ∗ and + are added to the BNF. Double

quotation marks enclose keywords, and angle brackets enclose non-terminal symbols.

We do not expand non-terminal symbols that are out of our concern, for example

〈loc-id〉, 〈literal-exp〉, 〈boolean-type〉 and so on.

Figure 1 shows the input language we use, which is a simplified form of BIR

(Bogor Input Representation) [25]. BIR was originally designed as an intermediate

language of a toolset called Bandera [12] which transforms a Java program to the

equivalent program written in various kinds of model-checker specific languages such

as PROMELA [20] of SPIN [19] and the SMV language [23]. More recently, BIR

was revised as an input language to a model checker Bogor [24]. We chose BIR

because memory-efficient backtracking will be beneficial not only to debuggers, but

also to explicit model checkers.

Although full-fledged BIR is so expressive that a number of modern language

features can be expressed seamlessly, at this initial stage of research, we want to

focus on as simple a language as possible. In this spirit, we deal with a subset of

BIR.

2 Related work is shown in Section 7
3 It is easy to decide how many bits are necessary since all program locations are known in static time.

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–5438

〈system〉 ::= “system” 〈system-id〉

“{” 〈system-member〉∗ “}”

〈system-member〉 ::= 〈const〉 | 〈global-var〉 | 〈fsm〉

〈global-var〉 ::= 〈var〉

〈var〉 ::= “transient”? 〈basic-type〉

〈var-id〉 〈var-init〉? “;”

〈fsm〉 ::= 〈thread〉

〈thread〉 ::= (“active” (“[” 〈num-active〉 “]”)?)

“thread” 〈thread-id〉 “(” 〈params〉? “)”

“{” 〈var〉∗ 〈body〉 “}”

〈params〉 ::= 〈basic-type〉 〈local-id〉

(“,”〈basic-type〉 〈local-id〉)∗

〈body〉 ::= 〈location〉+

〈location〉 ::= “loc” 〈loc-id〉 “:” 〈transformation〉+

〈transformation〉 ::= 〈guard〉? “do” 〈visibility〉?

“{” 〈action〉∗ “}” 〈jump〉 “;”

〈guard〉 ::= “when” 〈exp〉

〈visibility〉 ::= “visible” | “invisible”

〈action〉 ::= 〈assign-action〉 | 〈assert-action〉

〈assign-action〉 ::= 〈var-exp〉 “:=” 〈exp〉 “;”

〈assert-action〉 ::= “assert” “(” 〈exp〉 “)” “;”

〈jump〉 ::= “goto” 〈loc-id〉 | “return” 〈local-id〉

〈exp〉 ::= 〈literal-exp〉 | 〈var-exp〉 | 〈unary-exp〉 |

〈binary-exp〉 | 〈paren-exp〉 |

〈apply-exp〉

〈fun〉 ::= “fun” 〈fun-id〉 “(” 〈fun-params〉? “)”

“returns” 〈basic-type〉 “=” 〈exp〉 “;”

〈fun-params〉 ::= 〈basic-type〉 〈fun-local-id〉

(“,”〈basic-type〉 〈fun-local-id〉)*

〈var-exp〉 ::= 〈var-id〉

〈unary-exp〉 ::= 〈unary-op〉 〈exp〉

〈binary-exp〉 ::= 〈exp〉 〈binary-op〉 〈exp〉

〈paren-exp〉 ::= “(” 〈exp〉 “)”

〈apply-exp〉 ::= 〈fun-id〉 “(” 〈args〉? “)”

〈unary-op〉 ::= “+” | “-” | “!”

〈binary-op〉 ::= “+” | “-” | “*” | “/”

〈basic-type〉 ::= 〈boolean-type〉 | 〈integer-type〉

〈args〉 ::= 〈exp〉 (“,” 〈exp〉)*

Fig. 1. Syntax of simplified BIR

To prevent confusion, we note a couple of differences between BIR and usual

imperative languages.

• A transformation consists of statements (action in BIR notation) that should be

run simultaneously. The other threads cannot interfere until a transformation is

completed.

• Control-flow of BIR follows one of guarded commands. Only transformations

whose guards are valid can be executed. If more than one guard is valid, one of

corresponding transformations are chosen non-deterministically.

• BIR allows a functional language style function definition whose body is a pure

expression.

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–54 39

3 Motivating Example

1 sys tem RevTest {
2 i n t x := 1 ;
3 i n t y := 0 ;
4
5 t h r e a d t (i n t i) {
6 l o c l o c 0 :
7 when (x>0)
8 do {
9 y :=x+ i ;

10 x := f l i p (y) ;
11 }

12 goto l o c 0 ;
13 when (x<=0)
14 do {
15 y :=x− i ;
16 x := f l i p (y) ;
17 }

18 goto l o c 0 ;
19 }

20 }

(a) A simple BIR program. flip(x) inverts a
sign of x and is defined as -x.

(_ , _ , _ , _)

(_ , 2 , 1 , _)

save(x)

(_ , 3 , 1 , 0)

save(y)

(t(1), 9, 1 , 2)

y:=x+i

x:=flip(y)

y:=x−i

(t(−1),16, 1,−1)

x:=flip(y)

(t(1),10,−2, 2)

(t(−1),15,−2,−1)

y:=pop()

x:=y+i

y:=flipI(x)

x:=y−i

(b) An execution trace instance, when two thread t(1)
and t(-1) are active, and its forward (left) and back-
ward (right) statements. flipI(x) is an inverse function
of flip(x) and is defined as -x.

Fig. 2. In (b), a state is expressed as a tuple of thread id, transition id, variable x’s value, and variable y’s
value.

Figure 2(a) is a simple BIR program that allows multiple non-terminating

threads to run simultaneously, a typical case in multi-thread programs. Suppose

that we provide backtracking by state-saving. Then we need to save every variable

change as well as thread and location change. If we employ checkpointing, variable

changes are saved less often, but inherently it shares the same memory blow-up

problem with state-saving method. It also does not seem to be possible to generate

a reverse program of Figure 2(a) by static dependency analysis, since nondetermin-

ism between multiple threads imposes the absence of overall control flow. Note that

in any methods above, past threads and locations should be saved for backtracking.

The above observations motivated us to make a backtracking algorithm based on

thread/location history.

We want to generate reverse code per each assignment while we are running a

program on debugger. Figure 2(b) demonstrates what dynamic reverse code looks

like. In the middle of Figure 2(b) are state flow when two threads t(1) and t(-1)

are running simultaneously, where each state is denoted as a 4-tuple of a thread,

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–5440

a line number of the current location 4 and the values of x and y. Statements on

the arc arrows show what statements are executed along with the state change.

A special debugging command save is used to hold initial values of x and y in a

LIFO manner. On the other hand, right-had side of the figure are dynamic reverse

statements. Reverse statements is generated from the previous assignments and

save commands executed ahead of the current location. For example, in order to

come up with a reverse statement x:=y-i, we are using the previous assignment

y:=x+i, exploiting the fact that y and i have not yet changed. Similiary a reverse

statement y:=flipI(x), where flipI(x) is an inverse function of flip(x), is based on the

previous assignment x:=flip(y). Another special debugging command pop is the

counterpart of save to restore a value. Note that it is enough to save only initial

values of two global variables and thread/location history. Previous assignments

can be projected from the thread/location history. From the next sections, we will

show in detail how we generate reverse code in runtime.

4 Reverse Code Generation

In this section, we suggest a framework where reverse code fragments are automat-

ically computed at runtime. The basic idea is to log pointers to program locations

and figure out the previous values of variables based on the current values of the

variables and previously-run statements, which are available from program location

history.

We demonstrate dynamic reverse code generation beginning with the definition

of reverse code fragment and other necessary concepts.

Definition 1 (Transition)

A transition is a pair 〈threadNum, transformation〉, where

threadNum ∈Z

transformation ∈Transformation[system]

A distinct threadNum is assigned to each instance of thread.

Definition 2 (Reverse code fragment)

A reverse code is a triple 〈transition, rpoint, rstmt〉, where

rpoint ∈Loc[system]; denotes a reverse point

rstmt :a sequence of assignments; denotes a reverse statement

By Transformation[system] we denote a set of the semantic counterparts of

〈transformation〉’s that appear in a given system. Similarly, Loc[system] is a set

of semantic counterparts of 〈location〉’s of a given system. Assignment is a set of

assignments whose syntax follow 〈assign-action〉 of BIR.

4 The current location is the line number of the last statement.

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–54 41

threadFoo

Foo body

location1

loc1 transformation1

location2

...

Fig. 3. A part of an abstract syntax tree of a simplified BIR program that contains a thread Foo

A reverse code 〈t, rp, rs〉 denotes that if t is the last transition executed, the

previous program location is rp, and rs should be executed to restore the previous

values. Our framework infers rp and rs based on a stack of transitions. To make

the argument clear, we define a backtracking stack as follows:

Definition 3 (Backtracking stack)

A backtracking stack is a sequence of transitions t1t2 . . . tn, where n ≥ 1, placed in

order of execution.

In the next two subsections, we show how the backtracking stack is used to infer

reverse point and reverse statement.

4.1 Inferring a Reverse Point

A program written in a structured language like BIR is usually maintained as an

abstract syntax tree inside an interpreter. Figure 3 shows a snippet of an abstract

syntax tree of a simplified BIR program.

Once the last transition t is fetched from the backtracking stack, by threadNum

of t a thread to be backtracked is decided, and another element of t, transformation

can be used to infer the previous program location along with an abstract syntax

tree of a given program. For example, in Figure 3, it is straightforward to see that

the previous location of transformation1 is location1 and its identification is loc1.

4.2 Inferring a Reverse Statement

In our simplified BIR, only assignments 5 change the state except for program lo-

cations. Hence we focus on an assignment trace defined as below:

Definition 4 (Assignment trace)

An assignment trace is an ordered sequence of assignments projected from a back-

tracking stack. We assume that no local variables in different thread instances use

the same name. For example, they can be indexed by the thread id.

5 corresponding to 〈assign-action〉 in Figure 1

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–5442

The right hand side of an assignment that has no more than one variable can

be expressed as a function application in the following way:

Definition 5 (Assignment)

An assignment with no more than one variable on its right-hand side is described

in the following syntactic form.

x := (λp.s)y s.t. FV (λp.s) = ∅

x, p, y ∈V ar

s ∈FoExp

where,

V ar ::= a set of variables

FoExp ::=V ar | Z | FoExp op FoExp |

(λV ar.FoExp)FoExp

op ::=+ | − | ∗ | /

FV (s) returns a set of free variables of a term s. Often we will give a name to a

lambda abstraction, hence (λp.s)y will be denoted in form e(y), where e is a function

that takes one argument.

For example, x := y + 1 can be viewed as x := (λp.p + 1)y, or x := f(y) when

f
def
= λp.s ∧ FV (f) = ∅. However Definition 5 is not immediately applicable to an

assignment whose right hand side contains more than one variable. For instance,

x := p + q cannot be defined in the form of Definition 5. For the moment, let

us restrict to the case where the right hand side of an assignment depends on at

most one variable. We will expand our consideration to multiple-variable case in

Section 4.2.1.

Now consider the following assignment trace fragment under our consideration.

Assignments are labeled for the sake of explanation.

. . . → [x := e1(y)]1
∗
→ [y := e2(z)]2 → . . .

Let us assume that we are about to backtrack over the assignment labeled with

“2”. Provided that variable y is not defined between assignment “1” and “2”, we

can restore the old value of y by executing y := e−1
1 (x) where ∀y ∈ Z : e−1

1 ◦
e1(y) = y under the assumption that x can be recovered to the value as it was just

after executing assignment one. In other words, y := e−1
1 (x) constitutes a reverse

statement corresponding to a transformation that contains assignment two. We

will call that kind of assignment a inverse assignment (IA). We capture the above

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–54 43

description on the following diagram, where a function restore 6 recovers a value of

x to the value as it was immediately behind assignment one.

. . . → [x := e1(y)]1
∗
→ [y := e2(z)]2 → . . .

. . . ← [y := e−1
1 (restore(x))]2 ← . . .

From now on, we will generalize the above observation. What we want is to

obtain an inverse assignment for each assignment in a transformation. The first

step is to find a reminiscent assignment defined as below:

Definition 6 (Reminiscent assignment (RA))

A reminiscent assignment ra of an assignment y := rhs must satisfy the following

three conditions in a given assignment trace at.

(i) ra occurs no later than y := rhs in at,

(ii) y appears in the right-hand side of ra, and

(iii) y is not defined between ra and the assignment y := rhs in at, including ra

and excluding the assignment y := rhs.

In the previous example, the RA of assignment two is x := e1(y). Note that

if an assignment is self-defined as in the form of x := e(x), then the RA of it is

trivially itself. Also note that, due to the third condition, unless an assignment α

is self-defined, the RA of α cannot have the same variable on both sides of the RA.

As illustrated before, an RA can be used to restore the previous value of a

variable. However, not every RA has such an ability. Even after we have found an

RA x := e(y), only when e−1 is known or derivable is the RA of use. We name such

an RA a reversible RA, which is defined as below:

Definition 7 (Reversible RA (RRA))

A reversible reminiscent assignment ra ≡ x := e(y) of an assignment y := rhs must

satisfy the following conditions.

• all three conditions described in Definition 6, and

• an inverse function e−1 is given or derivable.

An inverse function may be given by a user, or more preferably often it can be

derived in an algorithmic way. In Section 6, we will depict how we can derive an

inverse function from an assignment with an arithmetic expression on its right hand

side.

There may exist multiple RRA’s, and in which case we simply choose the last

one in a given assignment trace. On the other hand, there may be no RRA. A

variable may be redefined before being used in later assignments, or even if there

exists an RA, it may not be reversible. At the moment, we simply store the previous

6 See Section 4.2.2.

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–5444

value of a variable if no RRA exists 7 . The previous values of variables are stored

in a value stack defined as follows:

Definition 8 (Value stack)

A value stack is a sequence of 〈var, val〉’s placed in order of generation, where

var ∈ a set of variables

val ∈Z

If an RRA is found, the next step to construct an inverse assignment is to apply

an inverse function that matches the function on the right hand side of the RRA.

An inverse assignment with regard to an RRA is defined as follows:

Definition 9 (Inverse Assignment (IA) w.r.t. RRA)

If x := e(y) is an RRA of y := rhs, then the inverse assignment of y := rhs is:

y := e−1(restore(x))

where a function restore(x), which will be defined in Section 4.2.2, returns the value

of x as it was immediately after the RRA was executed.

If an RRA does not exist, the previous value to be restored should be kept in a

value stack, and an IA for that variable is to get the saved value. In the following,

we define an IA when no RRA is available using a helper function pop.

Definition 10 (A function pop(var ,n, vs))

A function pop(var ,n, vs), where n ∈ N, returns the value associated to

the nth occurring of a variable var in a value stack vs. For example,

pop(x , 2 , [〈x , 1 〉, 〈y , 2 〉, 〈x , 0 〉]) yields 1.

Definition 11 (Inverse Assignment (IA) w.r.t. value stack)

If an assignment y := rhs is related to no RRA, an inverse assignment of y := rhs

is:

y := pop(y, 1, vs)

Now we are ready to make a reverse statement. Suppose that a transformation

contains a sequence of assignments a1, a2, . . . , an (we ignore other types of state-

ments), then we can calculate an inverse assignment iai for each assignment ai.

Now a reverse statement is ia1, ia2, . . . , ian.

4.2.1 Multiple Argument Expression

Until now we assumed that the right hand side of an assignment contains at most

one variable. Extending it to multiple occurrences requires only a modest change

which is described in this subsection.

7 We believe there would be other ways to avoid state-saving like the use of reaching definition suggested
in [4].

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–54 45

Suppose that the right hand side of an assignment is y + z. In a lambda

expression, ((λp.λq.p + q)y)z or ((λq.λp.p + q)z)y, which becomes, respectively,

(λp.y + p)z and (λp.p + z)y. Now they are in accordance with Definition 5 except

that the set of free variables of each lambda abstraction is not empty. For example,

FV (λq.y + q) = {y}.

In order to allow multiple variables on the right hand side of an assignment, we

extend Definition 5 as below:

Definition 12 (Assignment with restriction)

x := (λp.s)y/r̂ s.t. FV (λp.s) = {x | x ∈ r̂}

r̂ ∈2V ar−{y}

x, p, y ∈V ar

s ∈FoExp

(λp.s)y/r̂ denotes (λp.s)y where each v ∈ r̂ is to be substituted with the value it

denotes when the assignment is about to be executed. V ar and FoExp are defined

in the same way as in Definition 5.

Note that several syntactic forms of assignment are possible when more than one

variable is used in the right hand side of an assignment. In the above example, we

can view an assignment x := y + z as either x := (λp.cy + p)z or x := (λp.p + cz)y,

where cy and cz, respectively represent the value of y and z at the assignment.

What form is appropriate depends on what variable we want to restore. In a general

context, the following mutation property holds:

Property 1 (Mutation)

Given an assignment x := (λp.s)y/r̂, the right hand side can be transformed ac-

cording to the following rule:

(λp.(s[y/p])[p/r])r/(r̂ − {r}) ∪ {y}

where s[a/b] means that a is substituted for b in s.

Now we revise Definition 9 as follows:

Definition 13 (IA w.r.t. RRA (revised))

If x := e(y)/r̂ is an RRA of y := rhs, then the IA of y := rhs is:

y := e−1(restore(x))[∀r ∈ r̂ : restore(r)/r]

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–5446

4.2.2 Restore Function

In this section, we illustrate the restore function used in Definition 9 and 13. Func-

tion application restore(x) actually also carries on previous-value-inference proce-

dure for x based on an assignment trace. In the following, we show an algorithm

for the restore function, along with one more definition used in the algorithm.

Definition 14 (Assignment freezing)

If we say to freeze an assignment, mutation (Property 1) on the right-hand side of

the assignment is prohibited.

Algorithm 1 (Restore)

(1) Let a1 and a2, respectively, be the assignment we want to backtrack and the

RRA of a1.

(2) Suppose that the IA corresponding to a2 is:

y := e−1
1 (restore(x))[∀r ∈ r̂ : restore(r)/r]

(3) Freeze a2.

(4) Let us define a set S = {x} ∪ {r |∈ r̂}.

(5) For all x ∈ S, we perform restore(x), beginning with checking if x is redefined

(x’s value is changed) between a2 and a1.

(a) If redefined, let the redefining assignment be ar, and search for the RRA

of ar.

(i) If an RRA z := e2(x)/r̂′ is found, restore(x) returns the following:

e−1
2 (restore(z))[∀r ∈ r̂′ : restore(r)/r]

Then repeat the procedure from (3), setting a2 to the newly-found RRA

while leaving a1 the same as before.

(ii) If no RRA is found, return pop(x, n, vs), where n represents the number of

redefining assignments between a2 and a1, and vs denotes a value stack.

(b) If not redefined, return the current value of x.

Property 2 (Termination)

Algorithm 1 always terminate.

Proof. In (a), we only need to look into assignments between ar and a2 (including

ar) because no RRA for variable y does not allow redefinition of y (see Definition 6).

Therefore a2 approaches a1 and, in turn, the above procedure always terminates.�

Property 3 (Correctness)

Algorithm 1 always returns a correct value.

Proof. If we assume that we save all variable values that cannot be restored by

RRA’s 8 , it is enough to show, whenever an RRA of a variable y exists, the following

8 See Section 5

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–54 47

relation holds:

restore(x) = e(yp)[∀r ∈ r̂ : restore(r)/r]

where yp denotes the previous value of y. And that is true by induction. �

4.3 Analysis

It is straightforward to see that reverse point is inferred in constant time. However

reverse statement calculation requires more than that. Let n be the number of

assignments between an assignment a1 to be reverted and its RRA a2. Then it

requires O(n) to attain the first IA. If we succeed to find an IA and the IA induces

restoration of other sub-variables, each restoration process takes O(n) (note that we

look into assignments only between the redefinition of a sub-variable and a2). This

iterative process can take place O(n) times. Therefore if we denote the maximum

number of sub-variables during iterative process by m, the overall cost is O(mn ·n).

In worst case, n can increase up to the entire execution length, but practically n

tends to be small enough owing to locality of variable accesses.

5 Selective Store

In the previous sections, we assumed that we store a variable value only if it cannot

be restored through a corresponding RRA. This section is about how we implement

such a selective store.

Figure 4 exhibits how a selective store can be built while executing each action.

If two successive tests, one for the check of self-defined RRA (line 8) and the other

one for the search for an RRA in an assignment trace (line 9), fail, the current value

of an assignment variable (the value before the assignment is performed) is stored

in a value stack (line 10).

1 global atrace #assignment t race#
2 proc forward (t : Trans i t i on)
3 l et 〈thNum, trf〉 ≡ t
4 actions = getAct i ons (trf)
5 for each act i on a in actions :
6 i f a i s an assignment act i on :
7 l et (x := e(y)) ≡ a
8 i f ! isRRA(a) :
9 i f ! existRRAof (a ,atrace) :

10 s to r e (〈x, val(x)〉)
11 execute (a)

Fig. 4. forward execution procedure performing selective store on previous variable values.

1 fun isRRA(a)
2 l et (x := e(y)) ≡ a
3 i f x = y :
4 return i n v e r t i b l e (a) :
5 else :
6 return fa l se

Fig. 5. isRRA function used in Figure 4, returning true if a given assignment is a self-defined RRA, and
false otherwise.

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–5448

1 fun existRRAof (a ,trace)
2 i f empty (trace) :
3 return fa l se
4 else :
5 l et (x := ey(y)) ≡ a
6 l et (p := eq(q)) ≡ l a s t (trace)
7 i f p = x :
8 return fa l se
9 else i f q = x :

10 i f i n v e r t i b l e (p := eq(q)) :
11 return true
12 else : existRRAof (a , trace− l a s t (trace))
13 else : existRRAof (a ,trace− l a s t (trace))

Fig. 6. existRRAof function used in Figure 4, returning true if there exists at least one RRA in a given
assignment trace, otherwise false.

Two functions, isRRA and existRRAof, used in Figure 4 are separately depicted

in Figure 5 and Figure 6. Recall that isRRA(α) checks if a given α is a self-defined

RRA, and existRRAof(α,trace) looks through assignment trace trace to see the

existence of the RRA of α. In order for an assignment itself to be an RRA, both

sides of the assignment should be expressed with the same variable (see line 3 of

Figure 5), and the assignment should be invertible (there should exist an inverse

function corresponding to the right-hand side of an assignment). Meanwhile, if an

RRA is to be one of the previously executed assignments, the assignment variable

must be used in an RRA (see line 9 of Figure 6), and the RRA should be invertible.

If no RRA is found until all elements of a given assignment trace are searched

through, or while looking through an assignment trace, we hit an assignment whose

assignment variable is the same as the variable to be restored (line 7 of Figure 6),

we judge no RRA exists.

6 Derivation of Inverse Functions

Throughout the argument, we relied on inverse functions to achieve value restora-

tion. Inverse functions may be either given by a user or more preferably derived

automatically. As mentioned in a later section, derivation of inverse functions is

another active research topic. However since we express an arithmetic expression

as a function format, we suggest a way to derive an inverse function from it.

Figure 7 lists base rules applicable when a function argument is not under an-

other subexpression. Each rule is associated with a constraint to exclude expressions

which are impossible or infeasible to derive inverse functions, and some of constraints

require more than static lexical checking. Constraints of (3) and (4) look into the

assignment variable of RRA in runtime. Meanwhile modular conditions in (7) and

(8) need to be flagged when assignments containing division is executed, so that

cached modular conditions are to be available when those assignments are used as

RRA’s.

In the case a function argument variable is inside a subexpression, we apply the

expansion rules displayed in Figure 8 until the last rule is applied. These expansion

rules basically inverse subexpressions and hold them between angle brackets. Then

a substitution rule shown in Figure 9 put together the inverse subexpressions by

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–54 49

(λx.x + q)−1 =λx.x − q if x /∈ FV (q) (1)

(λx.p + x)−1 =λx.x − p if x /∈ FV (p) (2)

(λx.x × q)−1 =λx.x/q if x /∈ FV (q) ∧ y �= 0 when an RRA is y = x × q (3)

(λx.p × x)−1 =λx.x/p if x /∈ FV (p) ∧ y �= 0 when an RRA is y = p × x (4)

(λx.x − q)−1 =λx.x + q if x /∈ FV (q) (5)

(λx.p − x)−1 =λx.p − x if x /∈ FV (p) (6)

(λx.x/q)−1 =λx.x × q if x /∈ FV (q) ∧ x%q = 0 (7)

(λx.p/x)−1 =λx.p/x if x /∈ FV (p) ∧ p%x = 0 (8)

Fig. 7. Base rules for inverse function derivation

applying the rule until no element is left between the angle brackets.

(λx.op1 ◦ op2)
−1〈L〉 x ∈ FV (op1) op1 �= x x /∈ FV (op2)

(λx.op1)−1〈L, (λx.x ◦ op2)−1〉

(λx.op1 ◦ op2)
−1〈L〉 x /∈ FV (op1) op2 �= x x ∈ FV (op2)

(λx.op2)−1〈L, (λx.op1 ◦ x)−1〉

(λx.op1 ◦ op2)
−1〈. . . , (λx.x ◦ op)−1, . . .〉

(λx.op1 ◦ op2)−1〈. . . , λx.s, . . .〉

(λx.op1 ◦ op2)
−1〈. . . , (λx.op ◦ x)−1, . . .〉

(λx.op1 ◦ op2)−1〈. . . , λx.s, . . .〉

(λx.op1 ◦ op2)
−1〈L〉 opi = x x /∈ FV (opi%2+1)

λx.s〈L〉

Fig. 8. Expansion rules for deriving inverse functions. A symbol ◦ represents +,−, ∗ or /, and the function
body s is constructed according to the base rules in Figure 7.

λx.s〈l1, l2, . . . , ln−1, ln〉

λx.s[lnx/x]〈l1, l2, . . . , ln−1〉

Fig. 9. Substitution rule for deriving inverse functions

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–5450

Example 1

Trace of inverse function derivation for λx.((p ∗ x) + (r ∗ s))/t

(λx.((p ∗ x) + (r ∗ s))/t)−1〈〉

�−→ (λx.(p ∗ x) + (r ∗ s))−1〈(λx.x/t)−1〉

�−→ (λx.(p ∗ x) + (r ∗ s))−1〈λx.x ∗ t〉

�−→ (λx.p ∗ x)−1〈λx.x ∗ t, (λx.x + (r ∗ s))−1〉

�−→ (λx.p ∗ x)−1〈λx.x ∗ t, λx.x − (r ∗ s)〉

�−→ λx.x/p〈λx.x ∗ t, λx.x − (r ∗ s)〉

�−→ λx.(x − (r ∗ s))/p〈λx.x ∗ t〉

�−→ λx.((x ∗ t) − (r ∗ s))/p

The derivation rules shown here do not cover every case. If we fail to get an

inverse function, we rely on state-saving.

7 Related Work

There have been a number of attempts to provide reverse execution for debuggers.

The easiest way to achieve reverse execution is to save program locations and old

values that may be necessary in running a program backwards [2,11,26]. A clear

drawback of this state-saving approach is that the amount of data to be saved grows

very high easily as a program runs.

More often, reverse execution is simulated by reexecuting a program until the

earlier point. It appears to work well with small size program, but it cannot avoid

suffering from increasing time overhead as a program size gets bigger. Hence the

reexecution idea often comes in tandem with checkpointing. Old values are saved per

periodic checkpoints, not per every statement or instruction, and when we want to

backtrack, first we go back to the closest earlier checkpoint from the position we want

to jump back to, and then reexecute the remaining part down to the destination

point [1,8]. For example, [1] sets checkpoints on borders of control structures of

a program, such as the beginning and end of if or while statements. However,

essentially checkpointing and reexecution also cannot avoid memory accumulation

because memory is consumed every checkpoint.

Lastly, there is a way to run a program backwards with reverse code as presented

in [4,6,9] and this paper. Reverse code rids us of heavy dependencies on state saving.

A big challenge in this approach is how to generate reverse code. No existing

method can fully generate reverse code, and if reverse code fails to be generated,

state-saving takes care of reverse execution. [6,9] generate reverse code only for

self-defined assignments (e.g. reverse code of x:=x+1 is x:=x-1), and [4] produces

reverse code based on static analysis result for data dependency (for value retrieval)

and control dependency (for location retrieval). Currently [4] confines its use to

a single threaded program, and its extension to multi-threaded programs would

require a dramatic cost increase of static analysis.

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–54 51

8 Discussion

Through this paper, we have used inverse functions to generate reverse code, and we

have presented how to generate an inverse function whose function body consists of

an arithmetic expression. For more general functions, we hope to exploit research

result about program inversion. The origin of program inversion is Dijkstra’s short

note [13]. Program inversion computes an inverse program p−1 of a given program

p with relation of y = p(x) if and only if p−1(y) = x. Note that if we apply

program inversion to a function, we can obtain a corresponding inverse function.

There have been several works that can infer an inverse program based on anno-

tations of a pair of pre/post conditions around program constructs [10,13,18]. Most

research about automatic program inversion was pursued for functional program-

ming programming language. [14,17,22] calculates inverse functions for restricted

form of first-order functions. Recently Glück and Kawabe are working on this

area [15,16,21].

Meanwhile there is a limitation on the extent of statements that can benefit

from the presented method. Most heap update statements are not invertible. For

example, although o:=o.f is self-defined assignment 9 , it does not give a clue about

the previous value of o. Note that the same limitation is shared by [4] that also

generates reverse code, based on control/data dependency analysis result in static

time, as explained in Section 7.

We conjecture that our reverse code generation method may fit better with

functional programming languages, although we demonstrated it in imperative pro-

gramming language. In functional programming language, program text provides

more clues about heap update through, e.g., pattern matching.

Backtracking plays an important role in many areas in computer science besides

debugging. Simulation, model checking, theorem proving and logic programming

are a few of them. And more often than not, efficient memory usage is one of the

critical issues in those areas. We hope the backtracking method presented here can

help alleviate memory blow-ups in other areas too.

9 Conclusions

We have presented a reverse code generation method that can be used for reverse

execution while debugging. The novelty of our work is that we generate reverse code

on-the-fly based on a logged history of transitions, which are basically pointers to

program locations. This dynamic generation makes it possible to be get reverse

code even for multi-threaded programs.

One possible future work is to see how one can benefit from dynamic slicing as

in [2,5]. We suppose it will help improve reverse code generation time by removing

unnecessary assignments from an assignment trace. There are also a number of

engineering issues. For example, it may be possible to calculate reverse code in

the background while tracing a program forward step by step in a debugger, and

9 f is a field of o whose type is the same as o.

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–5452

have reverse code ready when one needs to backtrack. Or checkpointing could be

employed and reverse code should only be generated between checkpoints. We can

also cache reverse code and reuse it later if variable update is only locally affected.

Lastly, as we mentioned in the previous section, we are also interested in extending

this work to functional programming languages.

Acknowledgement

The author would like to thank especially Mogens Nielsen and Olivier Danvy for

their valuable comments and advice.

References

[1] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. An execution backtracking approach to
program debugging. IEEE Software, pages 21–26, 1991.

[2] Hiralal Agrawal, Richard A. Demillo, and Eugene H. Spafford. Debugging with dynamic slicing and
backtracking. Software-Practice and Experience, 23(6):589–616, 1993.

[3] Tankut Akgul and Vincent J. Mooney III. Instruction-level reverse execution for debugging. Workshop
on Program Analysis For Software Tools and Engineering 2002, 2002.

[4] Tankut Akgul and Vincent J. Mooney III. Instruction-level reverse execution for debugging. Technical
Report GIT-CC-02-49, Georgia Institute of Technology, September 2002.

[5] Tankut Akgul, Vincent J. Mooney III, and Santosh Pande. A fast assembly level reverse execution
method via dynamic slicing. In Proceedings of the 26th International Conference on Software
Engineering (ICSE‘04), 2004.

[6] Bitan Biswas and R. Mall. Reverse execution of programs. SIGPLAN Notices, 34(4):61–69, 1999.

[7] Simon P Booth and Simon B Jones. Walk backwards to happiness - debugging by time travel.
Automated and Algorithmic Debugging, pages 171–183, 1997.

[8] Bob Boothe. Efficient algorithms for bidirectional debugging. ACM SIGPLAN Notices, 35(5):299–310,
May 2000.

[9] Christopher D. Carothers, Kalyan S. Perumalla, and Richard M. Fujimoto. Efficient optimistic parallel
simulations using reverse computation. ACM Transactions on Modeling and Computer Simulation,
9(3):224–253, July 1999.

[10] Wei Chen and Jan Tijmen Udding. Program inversion: more than fun! Science of Computer
Programming, 15:1–13, November 1990.

[11] Jonathan J. Cook. Reverse execution of java bytecode. The Computer Journal, 45:608–619, 2002.

[12] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn Laubach, and Hongjun
Zheng. Bandera: Extracting finite-state models from java source code. Proceedings of the 22nd
International Conference on Software Engineering, June 2000.

[13] Edsger W. Dijkstra. Program inversion. In Program Construction, International Summer School,
volume 69 of LNCS, pages 54–57. Springer-Verlag, 1978.

[14] David Eppstein. A heuristic approach to program inversion. In International Joint Conference on
Artificial Intelligence (IJCAI-85), pages 219–221, 1985.

[15] Robert Glück and Masahiko Kawabe. A program inverter for a functional language with equality and
constructors. Asian Symposium on Programming Languages and Systems, pages 246–264, 2003.

[16] Robert Glück and Masahiko Kawabe. Derivation of deterministic inverse programs based on LR parsing.
Proceedings of Functional and Logic Programming: 7th International Symposium, pages 291–306, March
2004.

[17] Robert Glück and Masahiko Kawabe. Revisiting an automatic program inverter for Lisp. The Third
Workshop on Programmable Structured Documents, January 2005.

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–54 53

[18] David Gries. Inverting programs. In David Gries, editor, The Science of Programming, Monographs
in Computer Science, chapter 21, pages 265–274. Springer-Verlag, 1981.

[19] Gerald.J. Holzmann. The model checker Spin. IEEE Trans. on Software Engineering, 23(5):279–295,
May 1997. Special issue on Formal Methods in Software Practice.

[20] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, 2003.

[21] Masahiko Kawabe and Robert Glück. The program inverter LRinv and its structure. Practical Aspects
of Declarative Languages, pages 219–234, 2005.

[22] Richard E. Korf. Inversion of applicative programs. In International Joint Conference on Artificial
Intelligence (IJCAI-81), pages 1007–1009, 1981.

[23] K. L. McMillan. The SMV language. http://www.cis.ksu.edu/santos/smv-doc/ .

[24] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: An extensible and highly-modular model
checking framework. In Proceedings of the Fourth Joint Meeting of the European Software Engineering
Conference and ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE
2003), pages 267–276, 2003.

[25] SAnToS Laboratory. Bogor Software Model Checking Framework: User Manual, March 2005.
http://bogor.projects.cis.ksu.edu/ .

[26] Marvin V. Zelkowitz. Reversible Execution as a Diagnositc Tool. PhD thesis, Department of Computer
Science, Cornell University, 1971.

J. Lee / Electronic Notes in Theoretical Computer Science 174 (2007) 37–5454

http://www.cis.ksu.edu/santos/smv-doc/
http://bogor.projects.cis.ksu.edu/

	Introduction
	Input Language
	Motivating Example
	Reverse Code Generation
	Inferring a Reverse Point
	Inferring a Reverse Statement
	Analysis

	Selective Store
	Derivation of Inverse Functions
	Related Work
	Discussion
	Conclusions
	Acknowledgement
	References

