
Poster: Precooked Developer Dashboards:
What to Show and How to Use

Vladimir Ivanov
Innopolis University

Universitetskaya St, 1

Innopolis, Respublika Tatarstan,

Russia 420500

v.ivanov@innopolis.ru

Alan Rogers
Innopolis University

Universitetskaya St, 1

Innopolis, Respublika Tatarstan,

Russia 420500

a.rogers@innopolis.ru

Giancarlo Succi
Innopolis University

Universitetskaya St, 1

Innopolis, Respublika Tatarstan,

Russia 420500

g.succi@innopolis.ru

Jooyong Yi
Innopolis University

Universitetskaya St, 1

Innopolis, Respublika Tatarstan,

Russia 420500

j.yi@innopolis.ru

Vasili Zorin
Innopolis University

Universitetskaya St, 1

Innopolis, Respublika Tatarstan,

Russia 420500

v.zorin@innopolis.ru

ABSTRACT

Designing an effective and useful dashboard is expensive and it

would be important to determine if it is possible to elaborate a

“generic” useful and effective dashboard, usable in a variety of cir-

cumstances. To determine if it is possible to develop such dashboard

and, if so, its structure we interviewed 67 software engineers from

44 different companies. Their answers made us confident in the

possibility of building such dashboard.

ACM Reference format:

Vladimir Ivanov, Alan Rogers, Giancarlo Succi, Jooyong Yi, and Vasili Zorin.

2018. Poster: Precooked Developer Dashboards:

What to Show and How to Use. In Proceedings of 40th International Confer-

ence on Software Engineering Companion, Gothenburg, Sweden, May 27-June

3, 2018 (ICSE ’18 Companion), 2 pages.

DOI: 10.1145/3183440.3195028

1 INTRODUCTION

There is increasing interest and use of developer dashboards in

the software industry [2, 4, 10, 13, 14]. Developer dashboards are

typically used to visualize the overall status of a project — the

assumption here is that visualization helps managers/developers be

aware of the overall status of the projects they are working on, and

make proper collaborative/individual decisions while developing

software, which will improve the overall productivity and reliability

of a team [4–6, 8, 14, 15] and avoiding misinterpretation of data

[3, 9]. However, this promising assumption hold only if a dashboard

displays information needed by the users, without undesired and

distracting details.

What kinds of information do developers want to see in a dash-

board? And, why do developers want to see them in a dashboard?

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18 Companion, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). 978-1-4503-5663-3/18/05. . . $15.00
DOI: 10.1145/3183440.3195028

Also, how do developer want to use dashboards in their develop-

ment activities? These are the key research questions we ask in this

study. While there would be no single answer to these questions

[7], we seek to find general answers from software engineers in

the field. Despite that most modern dashboards are customizable,

developers often use the default dashboard due to the cost entailed

by customization — for example, developers often do not want to

read through the full functionalities the dashboard provides, and

consequently do not customize the dashboard, as reported in [14].

To answer our research questions, we conduct face-to-face in-

dividual interviews with 67 software engineers from at least 44

different companies (some developers did not want the name of

their organization to be revealed). We designed our survey ques-

tionnaire/sessions, taking into account the Goal-Question-Metric

(GQM) approach [1]. Knowing how developers want to use dash-

boards is essential when designing an effective dashboard.

Our key contributions are: (1) identifying metrics developers want

to see in dashboards with an observational study [12], (2) providing a

GQM model to understand the relevance of the identified metrics, and

(3) determining how developers want to use dashboards.

2 THE SURVEY

To approach our problem, we run a survey, collecting information

from developers to build a “typical” GQM, from which to derive the

dashboard. The following research questions were identified:

1. What are the most critical issues that software development

companies face during the production process

2. What information do companies use to detect problems during

the software development process?

3. Which metrics do companies use to detect problems during the

software development process?

4. Which structures and functions are appropriate for a dashboard?

A dashboard typically visualizes quantified information, and

thus answering our first research question essentially boils down to

figuring out metrics developers want to see in a dashboard. We use a

goal-directed GQM approach to find metrics developers want to see

in a dashboard. Through identifying typical goals developers want

to achieve, typical questions developers ask to pursue the goals,

402

2018 ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Swedenadimir Ivanov, Alan Rogers, Giancarlo Succi, Jooyong Yi, and Vasili Zorin

G1: More effective
effort estimation

G2: More efficient use
of resources

G3: Better software quality
and development process

Q1: What is the level of
collaboration with

customers?

Q2: How adherent is
the project with the

original plan?

Q3: How many features
have been implemented

so far?

Q4: What is the quality
of the project?

Q5: Is the consumption
of resources adherent to

the budget?

M1: Progress state of
the project

M2: Speed of the work
performed

M3: Status of testing
M4: Status of software

quality
M5: Effectiveness of

effort estimation

• Iteration burndown chart
• Release burndown chart
• Cumulative flow diagram
• % of feature cut

• Team velocity
• Average cycle time
• Schedule variance
• (Amount of tasks)/(unit of time)
• Lead time

• Code coverage
• % of passed tests
• Defect removal efficiency

• # of detected defects
• # of unresolved defects
• Defect density
• Coupling
• Class/method length
• System spoilage

• Effort estimation accuracy

Figure 1: The resulting “typical” GQM model where strong

labels and high-frequency metrics are depicted in boldface.

and finally typical metrics that can answer the typical developer

questions, we obtain a GQM model (Figure 1). The obtained GQM

model shows how the identified typical metrics are related to the

identified typical goals, and thus can be used to understand the

reasons developers want to see the identified metrics in a dashboard.

3 GOALS, QUESTIONS AND METRICS FOR
PRECOOKED DASHBOARDS

The resulting typical GQM model (Figure 1) shows a summary of

the results of our survey —it encompasses all responses to our sur-

vey questions asked in three different abstraction levels. Our GQM

model also shows, with bold-line boxes, which goals/questions/met-

rics our informants express particularly strong interest; we assign

bold-line boxes to goals/questions/metrics labeled as strong. An

immediate usage of our GQM model is for building a precooked

(default) developer dashboard that is likely to be useful for typical

developers. It is noteworthy that our GQM model can be applied to

a wide range of companies to which our informants are employed,

as we have shown previously.

4 HOW DO DEVELOPERS WANT TO USE A
DASHBOARD?

Overall, we summarize our survey results as follows:

According to our survey, developers are more interested in us-

ing dashboards for their operational needs such as monitoring

performance than for strategic/analytic purposes. Also, more

number of our subjects prefer the push mode to the pull mode,

coherently with the fact that the most desired feature is alerting

significant deviation from expected values.

In details, answering this cognitive question (“how to display/no-

tify these contents in a dashboard?”) thoroughly is beyond the ca-

pacity of our survey, and user experiments would also be required.

Still, our survey provides an opportunity to answer a related more

specific question, “how do developers want to use a dashboard?”,

and we show in the following the results for this last part of our

survey.

An operational dashboard (where detailed information about

software development process is constantly monitored) is preferred

over an analytical dashboard (where the causes of problems are

analyzed) and a strategic dashboard (where a snapshot of the project

is displayed). We measured the degree of the user preference for

each type of a dashboard with a sequence score calculated using

the gamma analysis [11], which places the user preference of each

type of a dashboard between -1 (lowest preference) and 1 (highest).

5 CONCLUSIONS

In this study, we have conducted a survey with developers from

various companies, in an attempt to obtain information necessary

to build effective developer dashboards. We have identified the five

distinct kinds of metrics: (1) metrics to show the current progress

state of the project, (2) metrics to show the speed of work performed,

(3) metrics to show the status of testing, (4) metrics to show the

status of software quality, and (5) metrics to show the effectiveness

of effort estimation. We have also connected these metrics with

the goals developers want to achieve, through a GQM model. We

have observed that, in general, developers are more concerned

about monitoring whether the development process is on track

than monitoring software quality.

We have spotted the difficulty of supporting this notification

effectively — it is difficult to picture the right track, when developers

are currently having difficulties in estimating the effort necessary

to complete a task. For this reason, we argue that research on effort

prediction deserves strong attention.

REFERENCES
[1] Victor R. Basili and David M. Weiss. 1984. A Methodology for Collecting Valid

Software Engineering Data. IEEE Trans. Software Eng. 10, 6 (1984), 728–738.
[2] Olga Baysal, Reid Holmes, and Michael W. Godfrey. 2013. Developer Dashboards:

The Need for Qualitative Analytics. IEEE Software 30, 4 (2013), 46–52.
[3] Luigi Benedicenti, Paolo Ciancarini, Franco Cotugno, Angelo Messina, Alberto

Sillitti, and Giancarlo Succi. 2017. Improved Agile: A Customized Scrum Process
for Project Management in Defense and Security. In Software Project Management
for Distributed Computing. Springer International Publishing, 289–314.

[4] Jan Bosch and Helena Olsson. 2017. Towards Evidence-Based Organizations:
Learnings From Embedded Systems, Online Games And Internet of Things. IEEE
Software PP, 99 (2017). Early Access Article.

[5] Ilenia Fronza, Alberto Sillitti, and Giancarlo Succi. 2009. An Interpretation of the
Results of the Analysis of Pair Programming During Novices Integration in a
Team. In Proceedings of ESEM 2009 (ESEM ’09). IEEE Computer Society, 225–235.

[6] Vladimir Ivanov, Alexey Reznik, and Giancarlo Succi. 2018. Comparing the relia-
bility of software systems: a case study on mobile operating systems. Information
Science 423 (2018), 398–411.

[7] Vladimir Ivanov, Alan Rogers, Giancarlo Succi, Jooyong Yi, and Vasily Zorin.
2017. What Do Software Engineers Care About? Gaps Between Research And
Practice. In Proceedings of the 2017 ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2017).

[8] Andrea Janes and Giancarlo Succi. 2014. Lean Software Development in Action.
Springer, Heidelberg, Germany.

[9] Andrea A. Janes and Giancarlo Succi. 2012. The Dark Side of Agile Software
Development. In Proceedings of the ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward! 2012).
ACM, New York, NY, USA, 215–228.

[10] Witold Pedrycz, Barbara Russo, and Giancarlo Succi. 2012. Knowledge Transfer
in System Modeling and Its Realization Through an Optimal Allocation of In-
formation Granularity. Appl. Soft Comput. 12, 8 (Aug. 2012), 1985–1995. DOI:
http://dx.doi.org/10.1016/j.asoc.2012.02.004

[11] Donald C Pelz. 1985. Innovation complexity and the sequence of innovating
stages. Science Communication 6, 3 (1985), 261–291.

[12] Paul R. Rosenbaum. 2010. Design of Observational Studies. Springer, New York.
[13] Alberto Sillitti, Andrea Janes, Giancarlo Succi, and Tullio Vernazza. 2004. Mea-

sures for mobile users: an architecture. Journal of Systems Architecture 50, 7
(2004), 393–405.

[14] Christoph Treude and Margaret-Anne Storey. 2010. Awareness 2.0: staying
aware of projects, developers and tasks using dashboards and feeds. In ICSE.

[15] Tullio Vernazza, Giampiero Granatella, Giancarlo Succi, Luigi Benedicenti, and
Martin Mintchev. 2000. Defining Metrics for Software Components. In Proceed-
ings of the World Multiconference on Systemics, Cybernetics and Informatics.

403

